当前位置:首页 >> 数学 >> 高一数学寒假作业8

高一数学寒假作业8


课时作业 8
时间:45 分钟

分段函数与映射
分值:100 分

一、选择题(每小题 6 分,共计 36 分) x+1,x<0, ? ? 1.已知 f(x)=?0,x=0, ? ?x-1,x>0, A.- 2 C. 3 1 3
? ?2?? 则 f ?f?3??的值为( ? ? ??


)

1 B. 3 2 D.- 3

?2? 2 ? 1? 2 1 解析:f ?3?= -1=- ,f ?-3?= . 3 ? ? 3 ? ? 3

答案:C 2.如图,函数 y=|x+1|的图象是( )

? ?x+1, x≥-1, 解析:y=|x+1|=? ?-x-1, x<-1. ?

答案:A

1 3.设集合 M=R,从 M 到 P 的映射 f:x→y= 2 ,则映射 f x +1 的值域为( ) B.{y|y∈R+} D.{y|0<y≤1}

A.{y|y∈R} C.{y|0≤y≤2}

1 解析:∵x2+1≥1,0< 2 ≤1. x +1 答案:D 4.从甲城市到乙城市的电话费由函数 g(t)= 1.06(0.75[t]+1)给 出,其中 t>0,[t]表示大于或等于 t 的最小整数,则从甲城市到乙城 市 5.5 min 的电话费为( A.5.04 元 C.5.83 元 ) B.5.56 元 D.5.38 元

解析:[5.5]=6,∴g(5.5)=1.06(0.75×6+1)=5.83(元). 答案:C
2 ? ? ?x ,x≥0, ?x,x≥0, ? 5.设 f (x)= φ(x)=? 2 则当 x<0 时, ? ? ?x,x<0, ?-x ,x<0,

f[φ(x)]为( A.-x

) B.-x2 C.x D.x2

解析:x<0 时,φ(x)=-x2<0,∴f[φ(x)]=-x2. 答案:B
? ?x-5,x≥6, 6.已知 f(x)=? 则 f(3)为( ?f?x+2?,x<6, ?

) D.5

A.2

B.3

C.4

解析:f (3)=f (5)=f (7)=7-5=2. 答案:A

图1 二、填空题(每小题 8 分,共计 24 分) 7.f(x)的图象如图 1,则 f(x)=________. 答案:f(x)=

?x+1,x∈[-1,0], ? 1 ?-2x,x∈?0,2].
8.若 A={8,9,10,11,12},B={1,2,3,4,5}可以建立 f:B→A 的一 个映射是________. 解析:答案可不唯一.只要满足映射的概念,即对 B 中任一元 素在 A 中都有唯一确定的元素与之对应即可. 答案:f :x→x+7
?2,x>0, ? 9.设 f (x)=? 2 若 f (-4)=f (0),f (-2)= ? ?x +bx+c,x≤0,

-2,则 f (x)的解析式为 f (x)=________. 关于 x 的方程 f (x)=x 的解的个数为________.

图2 解析:∵f (-4)=f (0),f (-2)=-2,
2 ? ??-4? -4b+c=c, 则? ,∴b=4,c=2. ?4-2b+c=-2, ? 2 ? ?x +4x+2,x≤0, ∴f (x)=? . ? ?2,x>0,

在同一坐标系下画 y=f (x)与 y=x 的图象, 由图知两函数有 3 个 交点,即 f (x)=x 方程的解的个数为 3 个.
?2,x>0 ? 答案:? 2 ? ?x +4x+2,x≤0,

3个

三、解答题(共计 40 分) +2, x≤-1, ?x 2x, -1<x<2, 10.(10 分)已知函数 f(x)=? x ? 2 x≥2,
2

? ? ? 7??? 求(1)f ?f?f?-4???; ??? ???

(2)若 f(a)=3,求 a 的值; (3)求 f(x)的定义域及值域.

? 7? ?1? ?1? 7 1 1 1 1 解:(1)f ?-4?=- +2= ,f ?4?=2× = ,f ?2?=2× =1, 4 4 4 2 2 ? ? ? ? ? ? ? ? ? 7??? ∴f ?f?f?-4???=1. ??? ???

(2)当 a≤-1 时,f(a)=a+2≤1,∴f(a)=3 无解. 当-1<a<2 时,f(a)=2a,∴-2<f(a)<4, 3 f(a)=2a=3,解得 a= , 2 a2 当 a≥2 时,f (a)= ,f(a)≥2, 2 a2 ∴f(a)=3,即 =3, 2 解得 a= 6. 3 综上所述 a= 或 a= 6. 2 (3)f(x)的定义域为 R,由(2)易知,值域为 R.
? ?1,x≥0, 11.(15 分)已知 f (x)=? 求不等式 x+(x+2)· f (x+ ?-1,x<0, ?

2)≤5 的解集. 解:当 x+2≥0,即 x≥-2 时,f (x+2)=1,则 x+x+2≤5, 3 -2≤x≤ ;当 x+2<0,即 x<-2 时,f (x+2)=-1,则 x-x-2≤5, 2 3 恒成立, 即 x<-2, ∴x< .故不等式 x+(x+2)· f (x+2)≤5 的解集为(- 2 3 ∞, ]. 2

图3 12.(15 分)如图 3 所示,已知底角为 45° 的等腰梯形 ABCD,底 边 BC 长为 7 cm, 腰长为 2 2 cm, 当垂直于底边 BC(垂足为 F)的直 线 l 从左至右移动(与梯形 ABCD 有公共点)时,直线 l 把梯形分成两 部分,令 BF=x,试写出左边部分的面积 y 与 x 的函数解析式,并画 出大致图象. 解:过点 A,D 分别作 AG⊥BC,DH⊥BC,垂足分别是 G,H. 因为 ABCD 是等腰梯形, 底角为 45° ,AB=2 2 cm, 所以 BG=AG=DH=HC=2 cm. 又 BC=7 cm,所以 AD=GH=3 cm. (1)当点 F 在 BG 上时, 1 即 x∈[0,2]时,y= x2; 2 (2)当点 F 在 GH 上时, 即 x∈(2,5]时,y= x+?x-2? ×2=2x-2; 2

(3)当点 F 在 HC 上时,即 x∈(5,7]时, y=S 五边形 ABFED=S 梯形 ABCD-SRt△CEF 1 1 = (7+3)×2- (7-x)2 2 2

1 =- (x-7)2+10. 2 综合(1)(2)(3),得函数解析式为 x x∈[0,2] ? ?2 y=?2x-2 x∈?2,5] 1 ? - ? 2?x-7? +10 x∈?5,7]
2 2

1

.

函数图象如图 4 所示.

图4


更多相关文档:

高一数学寒假作业8及答案

高一数学寒假作业8及答案_数学_高中教育_教育专区。寒假作业八一、选择题 1.设集合 A={1,2},则 A 的子集个数是 A.1 B.3 C.4 2.角 ? 的终边过点 ...

2014-2015学年高一数学寒假作业(8)(Word版,含答案)

2014-2015学年高一数学寒假作业(8)(Word版,含答案)_数学_高中教育_教育专区。高一数学寒假作业(八) 一、选择题,每小题只有一项是正确的。 1.若 ?log 2 x ...

新课标2016年高一数学寒假作业8

新课标2016年高一数学寒假作业8_数学_高中教育_教育专区。【KS5U】新课标 2016 年高一数学寒假作业 8 《数学》必修一~二 一、选择题. 1.设全集 U={0,1,2,...

高一数学寒假作业(八)

高一数学寒假作业(八)_数学_高中教育_教育专区。安丘一中高一数学寒假作业(八)一、选择题 1.设集合 A ? ?0,1, 2, 4? , B ? x 1 ? x ? 4 ,则 A...

高一数学寒假作业8

高一数学寒假作业2 2页 2财富值如要投诉违规内容,请到百度文库投诉中心;如要提出功能问题或意见建议,请点击此处进行反馈。 高一数学寒假作业8 暂无评价|0人阅读|0...

最新名师选编高一数学寒假作业及答案8

最新名师选编高一数学寒假作业及答案8_高一数学_数学_高中教育_教育专区。最新名师选编高一数学寒假作业及答案 8 一、选择题,每小题只有一项是正确的。 1.若 ?...

高一数学寒假作业8

高一数学寒假作业四 4页 1财富值如要投诉违规内容,请到百度文库投诉中心;如要提出功能问题或意见建议,请点击此处进行反馈。 高一数学寒假作业8 隐藏>> 高一年级数学...

2013年高一数学寒假作业及答案

2013年高一数学寒假作业及答案_数学_高中教育_教育专区。数学练习(1)一、填空题 1.如果全集, A ? ?2,5,8? , B ? ?1,3,5, 7? ,那么 A ? B = 2...

高一数学寒假作业:(一)(Word版含答案)

高一数学寒假作业:(一)(Word版含答案)_数学_高中教育_教育专区。高一数学寒假作业(一) 一、选择题,每小题只有一项是正确的。 1.集合 A ? x ? Z | ?1 ...

山东省华侨中学2014-2015学年高一数学寒假作业【8】(含答案)

山东省华侨中学2014-2015学年高一数学寒假作业【8】(含答案)_高一数学_数学_高中教育_教育专区。寒假作业 ( 八 ) 一、选择题 1.若函数 f ( x) ? loga x...
更多相关标签:
高一寒假作业 | 高一英语寒假作业 | 高二数学寒假作业答案 | 全品作业本高一数学 | 高一数学作业本答案 | 高一数学必修1作业本 | 高一数学课时作业答案 | 浙教版高一数学作业本 |
网站地图

文档资料共享网 nexoncn.com copyright ©right 2010-2020。
文档资料共享网内容来自网络,如有侵犯请联系客服。email:zhit325@126.com