当前位置:首页 >> 数学 >> 【五佳教育】2014福建高职统考数学第一轮教材-集合与常用逻辑用语

【五佳教育】2014福建高职统考数学第一轮教材-集合与常用逻辑用语


【五佳教育】2014 福建高职统考数学第一轮教材

集合与常用逻辑用语
A 组
(1)下列表示错误的是 (A) ( (B) ?a, b? ? ?b, a? (D) ? ? ??1,1? ? ( ② ?x ? ?1, ?1, 0? , 2 x ? 1 ? 0 ; ④ ?x ? N ,使 x 为 29 的约数.
*

/>)

?a? ? ?a, b?

(C) ??1,1? ? ??1, 0,1? ? (2)下列四个命题中, ① ?x ? R, 2 x ? 3x ? 4 ? 0 ;
2



③ ?x ? N ,使 x ? x ;
2

正确的有 个 (A)1 (B)2 (C)3 (D)4 (3)命题“若 p 不正确,则 q 不正确”的逆命题的等价命题是 (A)若 q 不正确,则 p 不正确 (B)若 q 不正确,则 p 正确 (C)若 p 正确,则 q 不正确 (D)若 p 正确,则 q 正确 (4)设全集为 U ,在下列条件中,是 B ? A 的充要条件的有 ① A ? B ? A ,② CU A ? B ? ? ,③ CU A ? CU B ,④ A ? CU B ? U , (A) 1 个 (5)有下列四个命题: ①“若 x ? y ? 0 ,则 x, y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题; ③“若 q ? 1 ,则 x ? 2 x ? q ? 0 有实根”的逆否命题;
2

( (

) )





(B) 2 个

(C) 3 个

(D) 4 个

④“不等边三角形的三个内角相等”逆命题; 其中真命题为 (A)①② (B)②③ (C)①③ (D)③④ ( )

(6)命题 p ::若 a, b ? R ,则 a ? b ? 1 是 a ? b ? 1 的充分不必要条件,命题 q :不等式

x ? 1 ? 2 的解集是 (??,?1] ? [3,??) ,则
(A) p 或 q 为假 (B) p 且 q 为真 (C) p 真 q 假 (7)写出阴影部分所表示的集合

( (D) p 假 q 真



U

U

A

B

A
C

B





① ;② . (8)在下列四个命题中,正确的有________. (填序号) ①若 A 是 B 的必要不充分条件,则非 B 也是非 A 的必要不充分条件

?a ? 0, 2 ②“ ? ”是“一元二次不等式 ax ? bx ? c ? 0 的解集为 R 的充要条件 ? ? b 2 ? 4ac ? 0 ?
③“ x ? 1 ”是“ x ? 1 ”的充分不必要条件
2

④“ x ? 0 ”是“ x ? x ? 0 ”的必要不充分条件
2 (9)若 U ? R , A ? {x | x ? x ? 2 ? 0} , B ? x x ? y ? 1, y ? A ,求 CU B , A ? B ,

?

?

A ? B , A ? CU B , A ? CU B , CU ? A ? B ? , CU A ? CU B .

(10)已知集合 A ? x x ? 3x ? 2 ? 0 , B ? x x ? 2 x ? m ? 0 且 A ? B ? A ,求 m 的取
2 2

?

?

?

?

值范围.

B 组
(11)设 A 、 B 为有限集, A 中元素的个数为 m , B 中元素的个数为 n , A ? B 元素的个 数为 s ,则 (A) m ? n ? s 范围是 (A) m ? ?1 ( (B) m ? n ? s ) (C) m ? n ? s (D) m ? n ? s ( (B) m ? ?1 (C) m ? ?1 (D) m ? ?1

(12)设集合 M ? ? ??, m ? , P ? y | y ? x ? 1, x ? R ,若 M ? P ? ? ,则实数 m 的取值
2

?

?



(13) 定义 A ? B x x ? A, 且x ? B , 若 A ? ?1, 2, 4, 6,8,10? , B ? ?1, 4,8? , A ? B ?( ) 则 A. ?4,8? B. ?1, 2, 6,10? C. ?1? D. ?2, 6,10?

?

?

(14)已知 A ? x x满足条件p , B ? x x满足条件q ①如果 A ? B ,那么 p 是 q 的 ②如果 B ? A ,那么 p 是 q 的 ③如果 A ? B ,那么 p 是 q 的 条件; 条件; 条件.

?

?

?

?

(A)充分条件 (B)必要条件 (C)充要条件 (D)既不充分也不必要条件 (15) 一个集合的所有子集共有 n 个, n 可以在 0、 2、 4、 6 中取的数有 则 1、 3、 5、 (16)已知 p : ? x ?



? ?x ? 2 ? 0 ? ? , q : ? x ? m ? x ? 1 ? m, m ? 0? ,若 ?p 是 ?q 的必要不充 ? ? x ? 10 ? 0 ?

分条件,求实数 m 的取值范围. )

(17)已知命题 p :方程 a x ? ax ? 2 ? 0 在[-1,1]上有解;命题 q :只有一个实数 x 满
2 2

足不等式 x ? 2ax ? 2a ? 0 ,若命题“p 或 q”是假命题,求实数 a 的取值范围.
2

( 18 ) 设 集 合 A=

??x, y ? y
?

2

? x ? 1 , 集 合 B= ? x, y ? 4 x 2 ? 2 x ? 2 y ? 5 ? 0 , 集 合

?

?

?

C= ? x, y ? y ? k x ? b ,问是否存在自然数 k, b ,使 ( A ? B) ? C ? ? ?证明你的结 论.

?

答案:A 组 (1)A(2)B(3)D(4)D(5)C(6)D(7)① ? A ? B ;② A ? B ? C U (8)①②④ (9)解: A ? x ? 1 ? x ? 2

?

?

∵ y ? A , ∴ ?1 ? y ? 2 , ∴ 0 ? y ? 1 ? 3

∵ x ? y ? 1 ,∴ B ? x ? 3 ? x ? 3, 且x ? 0 ∴ ? B ? {x | x ? 3或x ? ?3或x ? 0} U

?

?

A ? B ? ? x ? 1 ? x ? 2, 且x ? 0? , A ? B ? ? x ? 3 ? x ? 3?

A ? ? B ? {x | x ? ?3或 ? 1 ? x ? 2或x ? 3} , A ? ?U B ? ?0? U
痧? A ? B ? ? U
U

A?

U

B ? {x x ? 3或x ? ?3}

(10)解:? A ? B ? A,? B ? A ,?集合B 有四种可能: ?, ?,2?, 2? ?1 ? ?1, 当 B ? ? 时,由 x ? 2 x ? m ? 0 无解得, 4 ? 4m ? 0 ,∴ m ? 1
2

当 B ? ?1? 时,由 x ? 2 x ? m ? 0 有唯一解 x ? 1 得, m ? 1
2 2

当 B ? ?2? 时,由 x ? 2 x ? m ? 0 得 m ? 0 ,但这时 B ? ?0, 2? ,与 A ? B ? A 矛 盾. 综上所述,得 m ? 1 . B 组 (11)D (12)D(13)D(14)①A

②B
k

③C

(15)含有 k 个元素的集合的子集个数为 2 (16)解法一: p 即 x ? 2 ? x ? 10 ,

? k ? N ? 个,故可能的数有 1,2,4

?

?

∴ ?p : A ? x x ? ?2或x ? 10 , ?q : B ? x x ? 1 ? m或x ? 1 ? m, m ? 0 ∵ ?p 是 ?q 的必要不充分条件,

?

?

?

?

∴B A

?m ? 0, ? ?1 ? m ? ?2 ? m ? 9, ?1 ? m ? 10 ?

即 m 的取值范围是{m|m≥9}. 解法二:∵ ? p 是 ? q 的必要不充分条件,∴q 是 p 的必要不充分条件.

∴p 是 q 的充分不必要条件. 而 p : P ? x ? 2 ? x ? 10 , q : Q ? x ? m ? x ? 1 ? m, m ? 0

?

?

?

?

?m ? 0, ? ∴P Q,即 ?1 ? m ? ?2 ? m ? 9. ?1 ? m ? 10. ?
∴ m 的取值范围是 m m ? 9 (17)

?

?

解 :由a 2 x 2 ? ax ? 2 ? 0,得(ax ? 2)(ax ? 1) ? 0, 2 1 或x ? a a 2 1 ? x ? ? ?1,1? , 故 | |? 1或 | |? 1,? a |? 1 | ? a a “只有一个实数满足x 2 ? 2ax ? 2a ? 0” .即抛物线y ? x 2 ? 2ax ? 2a与x轴只有 显然a ? 0 ? x ? ? 一个交点, ? ? 4a 2 ? 8a ? 0.? a ? 0或2, ? ? 命题 " p或q为真命题"时 " | a |? 1或a ? 0" ? 命题 " P或Q "为假命题 ? a的取值范围为?a | ?1 ? a ? 0或0 ? a ? 1?
(18)解:? ? A ? B ? ? C ? ? A ? C ? ? ? B ? C ? ? ? ,

?A?C ? ? 且 B ?C ? ? ,
即方程组 ?

? y2 ? x ?1 ? y ? kx ? b

? k 2 x 2 ? (2kb ? 1) x ? b 2 ? 1 ? 0 ?①无解.
2

当 k ? 0 时,方程①有解 x ? b ? 1 ,与题意不符,

?k ? 0 ,①无解 ? ?1 ? (2kb ? 1) 2 ? 4k 2 (b 2 ? 1) ? 0
?b? 4k 2 ? 1 ,? k ? N ? b ? 1 . 4k
?4 x 2 ? 2 x ? 2 y ? 5 ? 0 ? y ? kx? b ? 4x 2 +

由方程组 ?

2(1 ? k ) x ? 5 ? 2b ? 0 ??②无解,即

? 2 ? 4(1 ? k ) 2 ? 16(5 ? 2b) ? 0 ? b ?

20 ? (k ? 1) 2 20 ? 8 8

?要①、②同时无解,则 1 ? b ?

20 ,但 b ? N ? b ? 2, 从而可得 k ? 1. 8

?存在自然数 k ? 1, b ? 2 ,使 ? A ? B ? ? C ? ?


更多相关文档:

【五佳教育】2014福建高职统考数学第一轮教材5.数列X教师版

【五佳教育】2014 福建高职统考数学第一轮教材数列等差数列知识清单 1、等差数列定义:一般地,如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个 常数...

【五佳教育】2014福建高职统考数学第一轮教材2逻辑X

【五佳教育】2014 福建高职统考数学第一轮教材 逻辑与关联词一、 知识清单: 1.常用逻辑用语 (1)命题 命题:可以判断真假的语句叫命题; 逻辑联结词: “或” “...

【五佳教育】2014福建高职统考数学第一轮教材2逻辑X教师版

【五佳教育】2014 福建高职统考数学第一轮教材 逻辑与关联词一、 知识清单: 1.常用逻辑用语 (1)命题 命题:可以判断真假的语句叫命题; 逻辑联结词: “或” “...

【五佳教育】2014福建高职统考数学第一轮教材二函数基础

【五佳教育】2014 福建高职统考数学第一 轮教材 二、函数一、映射与函数: (1)映射的概念: (2)一一映射:(3)函数的概念: 如:若 A ? {1,2,3,4} , B...

【五佳教育】2014福建高职统考数学第一轮教材二函数基础教师版

【五佳教育】2014 福建高职统考数学第一 轮教材 二、函数一、映射与函数: (1)映射的概念: (2)一一映射:(3)函数的概念: 如:若 A ? {1,2,3,4} , B...

【五佳教育】2014福建高职统考数学第一轮教材15导数与积分x

【五佳教育】2014福建高职统考数学第一轮教材15导数与积分x 2014福建高职统考数学,福州五佳教育出品,福州五佳教育是福州最专业的高职统考辅导机构2014福建高职统考数学...

【五佳教育】2014福建高职统考数学第一轮教材13不等式X

【五佳教育】2014 福建高职统考数学第一轮教材 不等式的性质 知识清单: 1.不等式的性质: ⑴(对称性或反身性) a ? b ? b ? a ; ⑵(传递性) a ? b...

【五佳教育】2014福建高职统考数学第一轮教材1三角函数概念x

4页 5财富值如要投诉违规内容,请到百度文库投诉中心;如要提出功能问题或意见建议,请点击此处进行反馈。 【五佳教育】2014福建高职统考数学第一轮教材1三角函数概念...

【五佳教育】2014福建高职统考数学第一轮教材八、圆锥曲线

【五佳教育】2014 福建高职统考数学第一轮教材 高三数学概念、方法、题型、易误点总结(八) 班级 姓名八、圆锥曲线 1.圆锥曲线的两个定义: (1)第一定义中要重视...
更多相关标签:
福建高职招考网 | 福建高职单招网 | 福建高职招考 | 2016福建高职单招试卷 | 福建高职单招 | 高职统考本科 | 福建省高职招考 | 福建省高职单招网 |
网站地图

文档资料共享网 nexoncn.com copyright ©right 2010-2020。
文档资料共享网内容来自网络,如有侵犯请联系客服。email:zhit325@126.com