当前位置:首页 >> 高一数学 >> 二程高中高一数学培优 第一讲

二程高中高一数学培优 第一讲


二程希望中学高一数学培优专题系列讲座

现实教我成熟,理想让我奋进!

第一讲 对集合的理解及集合思想应用的问题
源 源 源

新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .

高考要求 集合是高中数学的基本知识, 为历年必考内容之一, 主要考查对集合基本概念的认识和 理解,以及作为工具,考查集合语言和集合思想的运用 本节主要是帮助考生运用集合的观 点,不断加深对集合概念、集合语言、集合思想的理解与应用 重难点归纳 1 解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于 用描述法给出的集合{x|x∈P},要紧紧抓住竖线前面的代表元素 x 以及它所具有的性质 P;要 重视发挥图示法的作用,通过数形结合直观地解决问题 2 注意空集 ? 的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性, 如 A ? B,则有 A= ? 或 A≠ ? 两种可能,此时应分类讨论
源 源

新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o







新新新新 新新新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w 王kt@ 新王m 王 新 12 6c. o x c





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特 特 特 特特 特 特王特王特新特特王特 新 王 王w 王@ 新王m 王 新kt 12 .c6 o x c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o







新新新新 新新新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w 王kt@ 新王m 王 新 12 6c. o x c

典型题例示范讲解 典型题例示范讲解 例 1 设 A={(x,y)|y2-x-1=0},B={(x,y)|4x2+2x-2y+5=0},C={(x,y)|y=kx+b},是否存在 k、b ∈N,使得(A∪B)∩C= ? ,证明此结论 命题意图 本题主要考查考生对集合及其符号的分析转化能力,即能从集合符号上分辨 出所考查的知识点,进而解决问题 知识依托 解决此题的闪光点是将条件(A∪B)∩C= ? 转化为 A∩C= ? 且 B∩C= ? ,这 样难度就降低了 错解分析 此题难点在于考生对符号的不理解,对题目所给出的条件不能认清其实质内 涵,因而可能感觉无从下手 技巧与方法 由集合 A 与集合 B 中的方程联立构成方程组, 用判别式对根的情况进行限 制,可得到 b、k 的范围,又因 b、k∈N,进而可得值 解 ∵(A∪B)∩C= ? ,∴A∩C= ? 且 B∩C= ?
源 源

新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特 特 特 特特 特 特王特王特新特特王特 新 王 王w 王@ 新王m 王 新kt 12 .c6 o x c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o







新新新新 新新新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w 王kt@ 新王m 王 新 12 6c. o x c





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特 特 特 特特 特 特王特王特新特特王特 新 王 王w 王@ 新王m 王 新kt 12 .c6 o x c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o







新新新新 新新新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 x c 王w 王kt@ 新王m 王 新 12 6c. o





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特 特 特 特特 特 特王特王特新特特王特 新 王 王w 王@ 新王m 王 新kt 12 .c6 o x c

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o







新新新新 新新新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 x c 王w 王kt@ 新王m 王 新 12 6c. o





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特 特 特 特特 特 特王特王特新特特王特 新 王 王w 王@ 新王m 王 新kt 12 .c6 o x c

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o







新新新新 新新新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 x c 王w 王kt@ 新王m 王 新 12 6c. o





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特 特 特 特特 特 特王特王特新特特王特 新 王 王w 王@ 新王m 王 新kt 12 .c6 o x c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o







新新新新 新新新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w c t /p k t .c y x /

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 x k 王w c新t@ 21新.6c王o 王 王 m





新新新 新新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w c t /p k t .c y x /

特 特 特 特特 特 特王特王特新王特王特 新 特 王w c新tk@ 21新6王o 王 王 .c m x

?y2 = x +1 ∵? ? y = kx + b

∴k2x2+(2bk-1)x+b2-1=0

∵A∩C= ? ∴Δ1=(2bk-1)2-4k2(b2-1)<0 ∴4k2-4bk+1<0,此不等式有解, 其充要条件是 16b2-16>0, 即 b2>1 ①

?4 x 2 + 2 x ? 2 y + 5 = 0 ∵? ? y = kx + b
∴4x2+(2-2k)x+(5+2b)=0 ∵B∩C= ? ,∴Δ2=(1-k)2-4(5-2b)<0 ∴k2-2k+8b-19<0, 从而 8b<20, 即 b<2 5 ② 由①②及 b∈N,得 b=2 代入由Δ1<0 和Δ2<0 组成的不等式组,得
新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

?4k 2 ? 8k + 1 < 0, ? ? 2 ?k ? 2 k ? 3 < 0 ?
∴k=1,故存在自然数 k=1,b=2,使得(A∪B)∩C= ?
QQ:276219858
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

英山县二程希望中学余东海

第 1 页

2012/5/5

二程希望中学高一数学培优专题系列讲座

现实教我成熟,理想让我奋进!

例 2 向 50 名学生调查对 A、B 两事件的态度,有如下结果 赞成 A 的人数是全体的五 分之三,其余的不赞成,赞成 B 的比赞成 A 的多 3 人,其余的不赞成;另外,对 A、B 都不 赞成的学生数比对 A、B 都赞成的学生数的三分之一多 1 人 问对 A、B 都赞成的学生和都 不赞成的学生各有多少人? 命题意图 在集合问题中,有一些常用的方法如数轴法取交并集,韦恩图法等,需要考 生切实掌握 本题主要强化学生的这种能力 知识依托 解答本题的闪光点是考生能由题目中的条件,想到用韦恩图直观地表示出来
源 源 源

新新 新新 新新 新新
源 源 源 源 源 源 源 源















t p w w k g o m /w c h /: j.x y .c t x /

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w c @2 c o x t 1 .6 m k





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t p w .w k g o /m w c h /: jx y .c t x /

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w c t 2 6 o x k 1 .c m @

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o







新新新新 新新新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w 王kt@ 新王m 王 新 12 6c. o x c





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特 特 特 特特 特 特王特王特新特特王特 新 王 王w 王@ 新王m 王 新kt 12 .c6 o x c

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o







新新新新 新新新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w 王kt@ 新王m 王 新 12 6c. o x c





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特 特 特 特特 特 特王特王特新特特王特 新 王 王w 王@ 新王m 王 新kt 12 .c6 o x c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6







新新新新 新新新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w 王kt@ 新王m 王 新 12 6c. o x c

错解分析 本题难点在于所给的数量关系比较错综复杂,一时理不清头绪,不好找线索
源 源

新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特 特 特 特特 特 特王特王特新特特王特 新 王 王w 王@ 新王m 王 新kt 12 .c6 o x c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6







新新新新 新新新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w 王kt@ 新王m 王 新 12 6c. o x c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

技巧与方法 画出韦恩图,形象地表示出各数量关系间的联系
源 源

新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特 特 特 特特 特 特王特王特新特特王特 新 王 王w 王@ 新王m 王 新kt 12 .c6 o x c

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

3 =30,赞成 B 的人数为 5 30+3=33,如上图,记 50 名学生组成的集合为 U,赞成事件 A 的学生全体为集合 A;赞成事件 B 的学生全体为集合 B 设对事件 A、B 都赞成的学生人数为 x,则对 A、B 都不 x 赞成的学生人数为 +1,赞成 A 而不赞成 B 的人数为 30-x, 3 赞成 B 而不赞成 A 的人数为 33-x x 依题意(30-x)+(33-x)+x+( +1)=50,解得 x=21 3 所以对 A、B 都赞成的同学有 21 人,都不赞成的有 8 人
解 赞成 A 的人数为 50×
源 源 源

新新新新 新新新新
源 源 源 源 源 源 源 源















h : w w j.x g o m /w /c t /p k t .c y x

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w c新t@ 21新.6c王m 王 x k 王 o





新新新 新新新
源 源 源 源 源 源 源 源 源 源













h : w .w jx g o /m w /c t /p k t .c y x

特 特 特 特特 特 特王特王特新王特王特 新 特 王w c新tk@ 21新6王m 王 王 .c o x

A
X 30-X

U B 33-X X +1 3

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o 新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o







新新新新 新新新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 x c 王w 王kt@ 新王m 王 新 12 6c. o

学生巩固练习
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特 特 特 特特 特 特王特王特新特特王特 新 王 王w 王@ 新王m 王 新kt 12 .c6 o x c

1 集合 M={x|x=
特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6 新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

kπ π kπ π + ,k∈Z},N={x|x= + ,k∈Z},则( 2 4 4 2
新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

)

A M=N B M N C M N D M∩N= ? ) 2 已知集合 A={x|-2≤x≤7},B={x|m+1<x<2m-1}且 B≠ ? ,若 A∪B=A,则( A -3≤m≤4 B -3<m<4 C 2<m<4 D 2<m≤4 2 3 已知集合 A={x∈R|ax -3x+2=0,a∈R},若 A 中元素至多有 1 个,则 a 的取值范围是 _________ 4 集合 A={x|x2-ax+a2-19=0},B={x|log2(x2-5x+8)=1},C={x|x2+2x-8=0},求当 a 取什 么实数时,A∩B ? 和 A∩C= ? 同时成立 5 已知{an}是等差数列,d 为公差且不为 0,a1 和 d 均为实数,它的前 n 项和记作 Sn,
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

设集合 A={(an,

Sn S )|n∈N*}, A={(n, n )|n∈N*}若以集合 A,B 中的元素作为点的坐标,则这 n n 些点在直线上; 6 设 f(x)=x2+px+q,A={x|x=f(x)},B={x|f[f(x)]=x} (1)求证 A ? B; (2)如果 A={-1,3},求 B
新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t p w j.x g m /w c h /: w k y o t .c x /

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

特 特特特特特 特王新王王特特 特特特 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源新源新源新源 源 源源源 源th源p/:w w j.x源gy源m /w cx/ 源 源源k t o.c源源 特 特特特特特 特王特特特特特 新王王 王 新 王c@ 王.c王 王 新新 x t 2 6 m w k 1 o







新新新新 新新新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特 特 特 特特 特 特 特 特 特特 特 王 王 新王 王 新 王w 王kt@ 新王m 王 新 12 6c. o x c





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特 特 特 特特 特 特王特王特新特特王特 新 王 王w 王@ 新王m 王 新kt 12 .c6 o x c

新新新 源源源源源源源源 源 新新新 源源源源源源源源 源
t /: w k g m /w c h w p j.x t o y .c x /

特 特特特特特 特王特王新特王 新特特 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

新新新 源源新源新源新源 源 源源源 源th源源w k源gty源m 源cx/ 源 源j.x 源/w /: w p o .c 特 特特特特特 特王特特特特王 新王新 特 王 王c@ 王新 王 新 .c王 x t 2 6 m w k 1 o

英山县二程希望中学余东海

QQ:276219858

第 2 页

2012/5/5

二程希望中学高一数学培优专题系列讲座

现实教我成熟,理想让我奋进!

对集合的理解及集合思想应用的问题参考答案 第一讲 对集合的理解及集合思想应用的问题参考答案
1 答案 C 2 解析 ∵A∪B=A,∴B ? A,又 B≠ ? ,
源 源 源

新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

新新新 源源源源源源新源 源 新新源 源源源源源源源源 源
t /: w .x t .c /w /x h w p k y m j g o c

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .

特 特特特特特 特王新王王特王 特特特 特 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6

新新新 源源新源新源新源 源 源源源 源th源/:w 源.xk源源.cm /w /xc 源 源w j tyg 源源 p o 特 特特特特特 特王特特特特特 新王王 王 新 王新王王 王 新 w @ 1 .c m x c 2 o k t 6





新新新 新新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

?m + 1 ≥ ?2 ? ∴ ?2 m ? 1 ≤ 7 即 2<m≤4 ?m + 1 < 2 m ? 1 ?
答案 D
源 源 源

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

9 8 4 解 log2(x2-5x+8)=1,由此得 x2-5x+8=2,∴B={2,3} 由 x2+2x-8=0,∴C={2,-4}, 又 A∩C= ? ,∴2 和-4 都不是关于 x 的方程 x2-ax+a2-19=0 的解,而 A∩B ? ,即 A∩ B≠ ? , ∴3 是关于 x 的方程 x2-ax+a2-19=0 的解,∴可得 a=5 或 a=-2 当 a=5 时,得 A={2,3},∴A∩C={2},这与 A∩C= ? 不符合,所以 a=5(舍去);当 a= -2 时,可以求得 A={3,-5},符合 A∩C= ? ,A∩B ? ,∴a=-2 n( a1 + a n ) S S 1 5 解 在等差数列{an}中,Sn= ,则 n = (a1+an),这表明点(an, n )的坐标适 2 n 2 n S 1 1 1 合方程 y = (x+a1),于是点(an, n )均在直线 y= x+ a1 上 2 n 2 2 6 (1)证明 设 x0 是集合 A 中的任一元素,即有 x0∈A ∵A={x|x=f(x)},∴x0=f(x0) 即有 f[f(x0)]=f(x0)=x0,∴x0∈B,故 A ? B (2)证明 ∵A={-1,3}={x|x2+px+q=x}, ∴方程 x2+(p-1)x+q=0 有两根-1 和 3,应用韦达定理,得
3 a=0 或 a≥
新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w .x t .c /w /x h w p k y m j g o c w @ 1 .c m x c 2 o k t 6





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c







新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

?? 1 + 3 = ?( p ? 1), ? p = ?1 ?? ? ?( ?1) × 3 = q ?q = ?3
∴f(x)=x2-x-3 于是集合 B 的元素是方程 f[f(x)]=x, 也即(x2-x-3)2-(x2-x-3)-3=x (*) 的根 将方程(*)变形,得(x2-x-3)2-x2=0
新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t p w j.x g m /w c h /: w k y o t .c x / x t 2 6 m w k 1 o c @ .c

解得 x=1,3, 3 ,- 3

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

故 B={- 3 ,-1, 3 ,3}
源 源 源

新新新 源源源源 源 源源源源 新新 新新 源源源源 源源源源 源源 源源 特特特特 特特 特特王王 王王 特特 新新 特特 特特 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新新 源新新源 源 源源源源 源新新 源 源源源源 源源源源 源源 源源 特特特特 特特 特特特特 特特王 王特特 新王 王 新 王王 新新 王王
t /: w k g m /w c h w p j.x t o y .c x / x t 2 6 m w k 1 o c @ .c

新新 新新 新新 新新
源 源 源 源 源 源 源 源















t /p w w .x t .c m /w /c h : k y o x j g

特特特特 特 特 特特特特 特特 特特 王王新 王 新王 王王 王王 新新
w x k 1 6 m c t 2 c o @ .

课前后备注





新新新 新新 新新
源 源 源 源 源 源 源 源 源 源













t /p w .w x t .c /m w /c h : k y o x j g

特特特特 特 特 特特特特王 特特王 王王新特特 新 王王 王王 新新
w x @ 1 .c m c k 2 6 o t

英山县二程希望中学余东海

QQ:276219858

第 3 页

2012/5/5


赞助商链接
更多相关文档:
更多相关标签:
网站地图

文档资料共享网 nexoncn.com copyright ©right 2010-2020。
文档资料共享网内容来自网络,如有侵犯请联系客服。email:zhit325@126.com