当前位置:首页 >> 数学 >> 正弦三角函数

正弦三角函数


正弦三角函数

正弦三角函数的性质

一、正弦三角函数(y=sin x)性质有:
①定义域②值域③周期性④奇偶性⑤单调性
1、定义域: 如图:
-2π y



0

π



x

Y=sin x的图像是向x轴两方无限延伸的,可 知它的定义域为R

2、值域:

y

1

正弦线即y=sin x 自变量

x
-1 1

x

-1

如图所示不管自变量x ,如何变化正弦线的长都小于 或等于单位圆的半径长,所以|sin x|≤1即-1≤sin x≤1 就是说正弦函数的值域是[-1,1]

再如图
y 1 Y=1 0 x Y=-1

-1

图像在y=1,y=-1之间 所以函数的值域是 [-1,1]

3、周期性: 周期函数在图像上的表现为:函数值按一定的规 律重复出现。 如图:
Sin x=y
y

y x 0

x

Sin (x+2π)=y
Sin (x+2?2π)=y Sin (x+2kπ)=y

y

-4π

-3π

-2π



0

π







x

如上图可知红色部分重复出现所以正弦函数的周 期为2π、4π…… ,通常把最小正周期2π称 为它的
周期。

4、奇偶性

y -2π



0

π



x

如图函数的定义域为R关于原点对称,且 图形右侧绕坐标原点旋转1800后与左侧重合, 即图像关于原点对称,此函数为奇函数。

5、单调性

y

1

-1

0

1

x

-1

从图中可知:当x由-π/2增加到π/2时,sin x由-1增加到1 为增函数。 当x由π/2增加到3π/2时,sin x由1减小到-1为减函数

y -2π - π/2 π/2 π 0 3π/2 2π x



X: y:

-π/2 -1

π/2
1

X: y:

π/2
1

3π/2 -1

又由函数的周期性可知,它在[-π/2+2kπ , π/2+2Kπ]为 增函数,在[π/2+2Kπ,3π/2+2Kπ ]为减函数

请各位领导批评指正

谢谢


赞助商链接
更多相关文档:

三角函数正弦函数设计_图文

变化规律最强有力的数学工具. 本节课作为《三角函数》开篇的第一课时,主要解决了正弦、余弦函数的定义和其图 像的画法问题,为后面更好地学习三角函数的性质打下...

正弦函数的图象与性质及三角函数的周期性(基础)

正弦函数的图象与性质及三角函数的周期性(基础)_数学_高中教育_教育专区。关于高中正弦函数的讲解 让更多的孩子得到更好的教育 正弦函数的图象与性质及三角函数的...

正弦三角函数课堂训练题 教案

正弦三角函数课堂训练题 教案_初三数学_数学_初中教育_教育专区。九年级正弦三角函数初学课堂练习题!正弦三角函数课堂训练题 1.在 Rt△ABC 中,∠C 为直角, ∠A...

与正弦余弦三角函数有关的最值问题

正弦余弦三角函数有关的最值问题 - 龙源期刊网 http://www.qikan.com.cn 与正弦余弦三角函数有关的最值问题 作者:王小妹 来源:《文理导航》2014 年第 20 ...

浅谈正弦三角函数

浅谈函数 y=Asin(ω x+w ) 河南 李艳红 李清洲 函数 y=Asin(ω x+w )(A、ω、w 是常数)是高考中的重点,同时也被广泛应 用于物理和工程技术中。 下面...

三角函数及正弦余弦定理

函数 y=4sin(3x+ )+3cos(3x+ )的最小正周期是( ) A.6π B.2π C...60 则这个三角形的面积为___ §1.1.1 正弦定理和余弦定理参考答案一、选择...

三角函数的性质(正弦余弦)

三角函数的性质(正弦余弦)_数学_高中教育_教育专区。1.4 三角函数的图像与性质 一、 “五点法”做正弦函数、余弦函数的图像(掌握) : 正弦函数: y ? sin x,...

正弦型三角函数(求解析式)2013.3

正弦三角函数(求解析式)2013.3_高一数学_数学_高中教育_教育专区。函数一、...___ 三、授新: 例 1、已知函数 y ? sin ?? x ? ? ? (? ? 0, ?...

三角函数·正弦函数、余弦函数的图象

1.4 三角函数的图像 教学目标:让学生了解正弦函数、余弦函数图象的画法及其图像的特征. 教学重点:五点作图法画正、余弦函数的图象,正、余弦函数图像的特征. 教学难...

正弦余弦三角函数测试

正弦余弦三角函数测试 2011-12-7 一.选择题 1. 下列说法正确的的个数( )① 函数 y=sinx, x ∈ [0,2π ] 的图像关于点 (π ,0) 成中心对称 π成轴...

更多相关标签:
网站地图

文档资料共享网 nexoncn.com copyright ©right 2010-2020。
文档资料共享网内容来自网络,如有侵犯请联系客服。email:zhit325@126.com