当前位置:首页 >> 学科竞赛 >> 第05讲 1985年全国高中数学联赛试题及详细解析

第05讲 1985年全国高中数学联赛试题及详细解析


第一试 1.选择题(本题满分 36 分,每小题答对得 6 分答错得 0 分,不答得 1 分) ⑴ 假定有两个命题: -1 -1 甲:a 是大于 0 的实数;乙:a>b 且 a >b .那么( ) A. 甲是乙的 充分而不必要条件 B.甲是乙的必要而不充分条件 C.甲是乙的充分必要条件 D.甲既不是乙的充分条件也不是乙的 必要条件 2 ⑵PQ 为经过抛物线 y =2px

焦点的任一弦,MN 为 PQ 在准线 l 上的射影,PQ 绕 l 一周所 得的旋转面面积为 S1,以 MN 为直径 的球面积为 S2,则下面结论中,正确的是( ) A.S1>S2 B.S1<S2 C.S1≥S2 D.有时 S1>S2,有时 S1=S2, 有时 S1<S2 4 4 ⑶ 已知方程 arccos -arccos(- )=arcsinx,则( 5 5 )

A.x=
Z&X&X&K]

24 25

B.x=-

24 25

C.x=0
2

D.这样的 x 不存在.
2 2

[来源:学&科&网

⑷ 在下面四个图形中,已知有一个是方程 mx+ny =0 与 mx +ny =1(m≠0,n≠0)在同一 坐标系中的示意图,它应是( )
y y y y

O

x

O

x

O

x

O

1

x
y=-x

A.

B.

C.

D.

- ⑸ 设 Z、W、λ 为复数,|λ |≠1,关于 Z 的方程 Z - λ Z=W 有下面四个结论: - - λ W+ W 2是这个方程的解; 1-|λ |

Ⅰ.Z=

Ⅱ.这个方程只有一解;

Ⅲ.这个方程有两解; Ⅳ.这个方程有无穷多解.则( ) A.只有Ⅰ、Ⅱ正确 B.只有Ⅰ、Ⅲ正确 C.只有Ⅰ、Ⅳ正确 D.以上 A、B、 C 都不正确 ⑹ 设 0<a<1,若 x1=a,x2=a ,x3=a ,…,xn=a

x1

x2

xn-1

,……,则数列{xn}(

)

A.是递增的 B.是递减的 C.奇数项递增,偶数项递减 D.偶数项递增, 奇数项递减 二.填空题(本题满分 24 分,每小题 6 分) ⑴ 在△ABC 中,角 A、B、C 的对边分别为 a、b、c,若角 A、B、C 的大小成等比数列, 2 2 且 b -a =ac,则角 B 的弧度为等于 .

⑵ 方程 2x1+x2+x3+x4+x5+x6+x7+x8+ x9+x10=3 的非负整数解共有 组. ⑶ 在已知数列 1,4,8,10,16,19,21,25,30,43 中,相邻若干个数之和能被 11 整除的数组共有 . ⑷ 对任意实数 x,y,定义运算 x*y 为 x*y=ax+by+cxy,其中 a、b、c 为常数,等式右 端中的运算是通常的实数加法、乘法运算.现已知 1*2=3,2*3=4,并且有一个非零实数 d, 使得对于任意实数都有 x*d=x,则 d= .
[来源:学,科,网 Z,X,X,K]

第二试 (本试共有 4 题,每题满分 15 分) 1.在直角坐标系 xoy 中,点 A(x1,y1)和点 B(x2,y2)的坐标均为一位的正整数.OA 与 x 轴正方向的 夹角大于 45°,OB 与 x 轴正方向的夹角小于 45°,B 在 x 轴上的射影为 B?, A 在 y 轴上的射影为 A?,△OBB?的面积比△OAA?的面积大 33.5,由 x1,y1,x2,y2 组成的四 位数 x1x2y2y1 =x1?10 +x2?10 +y2?10+y1.试求出所有这样的四位数,并写出求解过程.
3 2

[来源:学科网]

4.平面上任给 5 个点,以 λ 表示这些点间最大的距离与最小的距离之比,证明:λ ≥2sin54?.

1985 年全国高中数学联赛试题
第一试 1.选择题(本题满 分 36 分,每小题答对得 6 分答错得 0 分,不答得 1 分) ⑴ 假定有两个命题: -1 -1 甲:a 是大于 0 的实数;乙:a>b 且 a >b .那么( ) A.甲是乙的充分而不必要条件 B.甲是乙的必要而不充分条件 C.甲是乙的充分必要条件 D.甲既不是乙的充分条件也不是乙的 必要条件 【答案】B -1 -1 【解析】由于 a>b 且 a >b 成立时,必有 a>0,b<0.故由乙可得甲,故选 B
[来源:学科网]

4 4 ⑶ 已知方程 arccos -arccos(- )=arcsinx,则( 5 5

)

A.x=

24 25

B.x=-

24 25

C.x=0

D.这样的 x 不存在.

【答案】D 4 4 4 3 【解析】即 arcsinx=2 arccos -π .设 arccos =θ ,则 cosθ = ,sinθ = . 5 5 5 5 ∴ sin2θ =2sinθ cosθ = 24 π .即 2θ 为锐角 .∴2θ -π <- .故选 D. 25 2

⑷ 在下面四个图形中,已知有一个是方程与 (m≠0,n≠0)在同一坐标系中的示意图, 它应是( )
y y y y

O

x

O

x

O

x

O

1

x
y=-x

A.

B.

C.

D.

【答案】A

- ⑸ 设 Z、W、λ 为复数,|λ |≠1,关于 Z 的方程 Z -λ Z=W 有下面四个结论: - - λ W+ W 2是这个方程的解; 1-|λ |

Ⅰ.Z=

Ⅱ.这个方程只有一解;

Ⅲ.这个方程有两解; Ⅳ.这个方程有无穷多解.则( ) A.只有Ⅰ、Ⅱ正确 B.只有Ⅰ、Ⅲ正确 C.只有Ⅰ、Ⅳ正确 D.以上 A、B、 C 都不正确 【答案】A - - 2 【解析】原式两端取共轭:Z-λ Z= W ,乘以 λ 再取共轭:λ Z-|?| Z=λ W,相加,由 |?|≠1,得方程有唯一解 Z= - - λ W+ W 2.选 A. 1-|λ |

⑵ 方程 2x1+x2+x3+x4+x5+x6+x7+x8+x9+x10=3 的非负整数解共有

组.

【答案】174 【解析】x1=1 时,x2+x3+x4+x5+x6+x7+x8+x9+x10=1,共有 9 解;

x1=0 时,x2+x3+x4+x5+x6+x7+x8+x9+x10=3,共有 9+A9+C9=9+72+84=165 解.
∴ 共有 174 解.

2

3

第二试 (本试共有 4 题,每题满分 15 分) 1.在直角坐标系 xoy 中,点 A(x1,y1)和点 B(x2,y2)的坐标均为一位的正整数.OA 与 x 轴正方向的夹角大于 45°,OB 与 x 轴正方向的夹角小于 45°,B 在 x 轴上的射影为 B?,A 在 y 轴上的射影为 A?,△OBB?的面积比△OAA?的面积大 33.5,由 x1,y1,x2,y2 组成的四位 数

x1x2y2y1=x1?103+x2?102+y2?10+y1. 试求出所有这样的四位数, 并写出求解过程.
【解析】x2y2-x1y1=67.x1<y1,x2>y2.且 x1,y1,x2,y2 都是不超过 10 的正 整数. ∴ x2y2>67,? x2y2=72 或 81.但 x2>y2,故 x2y2=91 舍去.∴ x2y2=72.x2=9, y2=8.
[来源:学|科|网]

y
A' A B

O

B' x

∴ x1y1=72-67=5.?x1=1,y1=5,∴ x1x2y2y1=1985.

3.某足球邀请赛有十六个城市参加,每市派出甲、乙两个队,根据比赛规则,比赛若 干天后进行统计,发现除 A 市甲队外,其它各队已比赛过的场数各不相同.问 A 市乙队已 赛过多少场?请证明你的结论. 【解析】证明:用 32 个点表示这 32 个队,如果某两队比赛了一场,则在表示这两个 队的点间连一条线.否则就不连线. 由于,这些队比赛场次最多 30 场,最少 0 场,共有 31 种情况,现除 A 城甲队外还有 31 个队,这 31 个队比赛场次互不相同,故这 31 个队比赛的场次恰好从 0 到 30 都有.就在 表示每个队的点旁注上这队的比赛场次.

4.平面上任给 5 个点,以 λ 表示这些点间最大的距离与最小的距 离之比,证明:λ ≥2sin 54?. 【解析】证明 ⑴ 若此五点中有三点共线,例如 A、B、C 三点共线,不妨设 B 在 A、C 之间,则 AB 与 BC 必有一较大者.不妨设 AB≥ BC.则

AC ≥2>2sin54?. BC


更多相关文档:

1985年全国高中数学联赛试题及解答

. -3- 1985 年全国高中数学联赛试题 第一试 1.选择题(本题满分 36 分,每...文档贡献者 不知道啊770 贡献于2014-05-15 1/3 专题推荐 1981年全国高中数学...

1985年全国高中数学联赛试题及解答

1985年全国高中数学联赛试题及解答_高三数学_数学_高中教育_教育专区。全国高中数学...第05讲 1985年全国高中数... 暂无评价 8页 免费 2004年全国高中数学联赛......

第06讲 1986年全国高中数学联赛试题及详细解析

同系列文档 第02讲 1982年全国高中数学... 第05讲 1985年全国高中数学......第06讲 1986年全国高中数学联赛试题及详细解析 隐藏>> 第一试 1.选择题(本题...

第02讲 1982年全国高中数学联赛试题及详细解析

同系列文档 第05讲 1985年全国高中数学... 第06讲 1986年全国高中数学......第02讲 1982年全国高中数学联赛试题及详细解析 隐藏>> 1.选择题(本题 48 分...

1985年全国初中数学联赛试题及详解

1985年全国初中数学联赛试题及详解_初三数学_数学_初中教育_教育专区。1985 年全国初中数学联赛试题及详解一、选择题(每小题 5 分,共 30 分) 1. 设 ABCD 为...

2005全国高中数学联赛试题及答案[1]

???20 分 2005 年全国高中数学联赛试题(二)一、 (本题满分 50 分) 如图,在△ABC 中,设 AB>AC,过 A 作△ABC 的外接圆的切线 l,又以 A 为圆心,AC ...

2005年全国高中数学联赛一等奖名单

2005年全国高中数学联赛一等奖名单_学科竞赛_高中教育...M051024 M051025 M051026 M051027 M051028 M...(高二) 翠园中学 深圳中学 广州市第二中学 华南...

2000-2012全国高中数学联赛分类汇编 专题05 集合函数

2000-2012全国高中数学联赛分类汇编 专题05 集合函数...使得第 i 组的元素在 f 之下的象都是 bi (i=...) 222 【解析】先平方去掉根号.由题设得(y-x)=...

近十年全国高中数学联赛试题一试(解析几何)

年全国高中数学联赛试题一试解析几何圆锥曲线部分 一、选择题 2 2 2000、已知点 A 为双曲线 x ?y =1 的左顶点,点 B 和点 C 在双曲线的右分支上,△...
更多相关标签:
1985年高考数学试题 | 1985imo试题难度 | 1985年高考语文试题 | 哈利波特剧情详细解析 | 镜头语言的详细解析 | 色戒剧情详细解析 | 信号详细剧情解析 | 金蝉脱壳剧情详细解析 |
网站地图

文档资料共享网 nexoncn.com copyright ©right 2010-2020。
文档资料共享网内容来自网络,如有侵犯请联系客服。email:zhit325@126.com