当前位置:首页 >> 工学 >> 电工学第七版第4章正弦交流电路

电工学第七版第4章正弦交流电路


第4章 正弦交流电路
4.1 正弦电压与电流

电工技术

4.2 正弦量的相量表示法 4.3 单一参数的交流电路 4.4 电阻、电感与电容元件串联的交流电路 4.5 阻抗的串联与并联
*4.6 复杂正弦交流电路的分析与计算

4.7 交流电路的频率特性 4.8 功率因数的提高
*4.9 非正弦周期电压和电流
总目录 章目录 返回 上一页 下一页

电工技术

本章要求

1. 理解正弦量的特征及其各种表示方法; 2. 理解电路基本定律的相量形式及阻抗; 熟练掌握计算正弦交流电路的相量分析法, 会画相量图。; 3. 掌握有功功率和功率因数的计算,了解瞬时 功率、无功功率和视在功率的概念; 4.了解正弦交流电路的频率特性,串、并联谐 振的条件及特征; 5.理解提高功率因数的意义和方法。
总目录 章目录 返回 上一页 下一页

电工技术

4.1 正弦电压与电流
正弦量:随时间按正弦规律做周期变化的量。 u i
i i

R

正弦交流电的优越性: 正半周 便于传输;易于变换 便于运算; 有利于电器设备的运行; . . . . .

总目录 章目录 返回

? _

+

_

? t

? + u _ _

+ u _

R

负半周

上一页 下一页

电工技术

设正弦交流电流:

Im
?

i
0

?t

i ? I m sin ?? t ? ?

?
初相角:决定正弦量起始位置 角频率:决定正弦量变化快慢 幅值:决定正弦量的大小

幅值、角频率、初相角成为正弦量的三要素。
总目录 章目录 返回 上一页 下一页

4.1.1周期、频率与角频率
周期T:变化一周所需的时间 (s)

电工技术

频率f :

f ?

1

角频率: ω ?

T 2π

(Hz)
? 2πf

T

i

(rad/s)

O

T

t

* 电网频率:我国 50 Hz ,美国 、日本 60 Hz * 高频炉频率:200 ~ 300 kHz * 中频炉频率:500 ~ 8000 Hz * 无线通信频率: 30 kHz ~ 30GMHz
总目录 章目录 返回 上一页 下一页

4.1.2 幅值与有效值
幅值:Im、Um、Em

电工技术

幅值必须大写, 下标加 m。

有效值:与交流热效应相等的直流定义为交流 电的有效值。
?0
T

i R dt ? I RT
2

2

交流

直流
1 T

均方根值
T 0

则有
有效值必 须大写

I ?

?
T 0

i dt

2

?

1 T

?
m

I m sin

2

2

ω t dt ?

Im 2

同理: U ?

U

E ?

Em 2
总目录 章目录 返回 上一页 下一页

2

注意: 交流电压、电流表测量数据为有效值 交流设备名牌标注的电压、电流均为有效值

电工技术

4.1.3初相位与相位差 ? 相位: t ? ψ

i

i ? I m sin( ω t ? ψ )

反映正弦量变化的进程。 ? O 初相位: 表示正弦量在 t =0时的相位角。
Ψ ? (? t ? Ψ )
t?0

ωt

? : 给出了观察正弦波的起点或参考点。
总目录 章目录 返回 上一页 下一页

相位差? :
两同频率的正弦量之间的初相位之差。 如: ? U m sin( ω t ? ψ 1 ) u
i ? I m sin( ? t ? Ψ 2 )

电工技术

? ? (? t ? ? 1 ) ? (? t ? ? 2 )

? ψ1 ? ψ 2
若 ? ? ψ1 ? ψ 2 ? 0
电压超前电流? 电流滞后电压?

u i

u i

0

?
总目录 章目录 返回

ωt

上一页 下一页

? ? ψ1 ? ψ2 ? 0 电流超前电压 ? u i u i

? ? ψ 1 ? ψ 2 ? ? 90 ? 电流超前电压90 ? u i u i

电工技术

?

O

ωt

O 90°
? ? ψ 1 ? ψ 2 ? 180 ? 电压与电流反相 u i u i

ωt

? ? ψ1 ? ψ2 ? 0 电压与电流同相 u i u

i O ωt O

ωt

总目录 章目录 返回

上一页 下一页

电工技术

注意: ① 两同频率的正弦量之间的相位差为常数, 与计时起点的选择无关。
i

i1

i2

?

O

?t

② 不同频率的正弦量比较无意义。

总目录 章目录 返回

上一页 下一页

电工技术

4.2 正弦量的相量表示法
1.正弦量的表示方法 波形图
O
ωt

u

瞬时值表达式 相量

u ? U m sin( ? t ? ? )

? U ? U?ψ

必须 小写

重点

前两种不便于运算,重点介绍相量表示法。
总目录 章目录 返回 上一页 下一页

2.正弦量用旋转有向线段表示
设正弦量: u ? U m sin ( ? t ? ψ ) y u u0ω ?
0
u1

电工技术

x

O
ψ

Um

ω t1

ωt

若:有向线段长度 = U m 有向线段与横轴夹角 = 初相位? 有向线段以速度ω 按逆时针方向旋转 则:该旋转有向线段每一瞬时在纵轴上的投影即表示 相应时刻正弦量的瞬时值。
总目录 章目录 返回 上一页 下一页

3. 正弦量的相量表示 实质:用复数表示正弦量
设A为复数,其表示形式有: (1) 代数式 A =a + jb

+j

电工技术

b

A

r
?

0
a ?b
2 2

a
复数的模

+1

式中: a ? r cos ψ
b ? r sin ψ

r ?

ψ ? arctan

b a

复数的辐角

(2) 三角式 由欧拉公式: 可得: e
j ψ
j ψ

A ? r cos ψ ? j r sin ψ ? r (cos ψ ? j sin ψ )
cos ψ ? e ?e 2
?j ψ

, sin ψ ?

e

j ψ

?e 2j

?j ψ

? cos ψ ? j sin ψ
总目录 章目录 返回 上一页 下一页

(3) 指数式 A ? r e j ψ (4) 极坐标式 A ? r ψ
A ? a ? j b ? r cos ? ? j r sin ? ? r e


电工技术

? r ψ

相量: 表示正弦量的复数称相量 设正弦量: u ? U m sin ( ω t ? ψ )
相量表示:
? U ? Ue


? U ψ

相量的模=正弦量的有效值 相量辐角=正弦量的初相角

电压的有效值相量
总目录 章目录 返回 上一页 下一页

或:
? U m ? U me
注意:


电工技术

? Um ψ

相量的模=正弦量的最大值 相量辐角=正弦量的初相角

电压的幅值相量

①相量只是表示正弦量,而不等于正弦量。
i ? I m sin ( ω t ? ψ ) = I m e j ψ ? I m ψ ?



②只有正弦量才能用相量表示, 非正弦量不能用相量表示。 ③相量的两种表示形式
? 相量式: U ? U e j ψ ? U ψ ? U ( cos ψ ? jsin ψ )

相量图: 把相量表示在复平面的图形
总目录 章目录 返回 上一页 下一页

电工技术

④只有同频率的正弦量才能画在同一相量图上。 可不画坐标轴,参考相量画在水平方向。
?

? I
? U

⑤相量的书写方式 ? I ? 模用最大值表示 ,则用符号: U m 、? m
? I ? 实际应用中,模多采用有效值,符号: U 、?

如:已知

u ? 220 sin ( ω t ? 45 ? )V

220 j45 ? j45 ? ? ? U m ? 220 e V或 U ? e V 则 2
总目录 章目录 返回 上一页 下一页

电工技术

⑥“j”的数学意义和物理意义
虚数单位 :j? ?1

旋转 90°因子: ? j
e
? j90 ?

? cos 90 ? ? j sin 90 ? ? ? j
? B

? 设相量 A ? r e j ψ ? 相量 A 乘以 e j 90 ? , ? ? A 将逆时针旋转90°,得到 B
? 乘以 e -j90 相量 A
?

+j

? A
Ψ

, ? ? A 将顺时针旋转 90°,得到 C

o

+1

? C
总目录 章目录 返回 上一页 下一页

正误判断
1.已知:
u ? 220 sin ( ω t ? 45 ? )V
? 220 U ? 2 有效值
45 ? V

电工技术

3.已知: ? ? 4 e j30 ? A I
瞬时值

相量


j45?

? 4 2 sin ( ω t ? 30 ? )A ?

45 ? ? U m ? 220 e V



4.已知:
? U ? 100 ? 15 ? V
负号 ?
?

? 2.已知: I ? 10 60 ? A

i ? 10 sin ( ω t ? 60 ? )A
最大值



U ? 100 V

?

? U ? 100 e

j15

V


上一页 下一页

总目录 章目录 返回

电工技术

例1: 将 u1、u2 用相量表示
u 1 ? 220 2 sin ( ω t ? 20 ? ) V

u 2 ? 110

2 sin ( ω t ? 45 ? ) V

+j
? U2

解: (1) 相量式
? U 1 ? 220 ? 20 ? V

? U1

45 ? 20 ?

? U 2 ? 110

? 45 ? V

+1

(2) 相量图
? U1

落后于U? 2

? U2

超前 U ? ? 落后
1

总目录 章目录 返回

上一页 下一页

电工技术

例2: 已知 i 1 ? 12 .7 2 sin (314 t ? 30 ? )A
i 2 ? 11 2 sin (314 t ? 60 ? )A

求:i ? i 1 ? i 2 。 ? 解: I 1 ? 12.7 30 ? A
? I 2 ? 11 ? 60 ? A
? ? ? I ? I 1 ? I 2 ? 12.7 30 ? ? 11 ? 60 ?

? 12.7( cos 30 ? ? j sin 30 ? ) ? 11( cos 60 ? ? j sin 60 ? )

? (16.5 - j3.18)
i ? 16.8

? 16 . 8 ? 10 . 9 ? A

2 sin ( 314 t ? 10.9 ? ) A

有效值 I =16.8 A
总目录 章目录 返回 上一页 下一页

电工技术

例3:

图示电路是三相四线制电源, 已知三个电源的电压分别为: u A ? 220 2 sin 314 t V
u B ? 220 2 sin (314 t ? 120 ? )V
2 sin (314 t ? 120 ? )V
+
? UA

u C ? 220

试求uAB ,并画出相量图。
解: (1) 用相量法计算:
? U A ? 220
? U B ? 220
? U C ? 220

+ A
? U AB

0 ?V
? 120 ? V
? 120 ? V

N



? UB



? UC

N


+



B
C
上一页 下一页

+

总目录 章目录 返回

电工技术

由KVL定律可知
? ? ? U AB ? U A ? U B ? 220 0 ? V ? 220 ? 120 ? V

? U AB ? 220 V ? 220

? cos
30 ? V

( ? 120 ? ) ? j sin ( ? 120 ? ) ?V
? UC

? 220 ( 1 ? 0.5 ? j 0.866 )V
? 220 ? 1.73
? 380 30 ? V
所以 u AB ? 380 2 sin ( ω t ? 30 ? )V
? UB

? -UB

? U AB

30 ?

? UA

(2) 相量图
U AB ? 2 U A cos 30 ? ? 3 UA

总目录 章目录 返回

上一页 下一页

4. 3 单一参数的交流电路
4.3.1. 电阻元件的交流电路 1. 电压与电流的关系 根据欧姆定律: u ? R i 设 u ? U m sin ω t
i ? u R ? U
m

电工技术

i

+ u _
sin ω t
? I

R

sin ω t R

?

2U R

? I m sin ω t ?

2 I sin ω t

① 频率相同 U ②大小关系:I ? R ③相位关系 : u、i 相位相同 相位差 ? :? ? ? u ? ? i ? 0

相量图 相量式:

? U

? ? I 0? U ? U 0? ? I ? ? U ? RI
总目录 章目录 返回 上一页 下一页

电工技术

2. 功率关系 (1) 瞬时功率 p:瞬时电压与瞬时电流的乘积
i? u?
小写

2 I sin ω t 2 U sin ω t

u i

i u

O p
2

ωt p

p ? u?i
? U m I m sin
? 1 2

ωt
ωt

U m I m (1 ? cos 2 ω t )
O

结论: p ? 0 (耗能元件),且随时间变化。
总目录 章目录 返回 上一页 下一页

电工技术

(2) 平均功率(有功功率)P
瞬时功率在一个周期内的平均值
P ? 1 T 1
T 1
T

i

?
?
T 0

T 0

p dt ?

1 T

?

T 0

u ? i dt

+ u _
p p

R

大写
?
?

1 2

U m I m (1 ? cos 2 ω t ) d t

P
O ωt

?

T 0

UI (1 ? cos2 ω t )d t ? UI
U R
2

2 P ?U ?I ? I R ?

单位:瓦(W)

注意:通常铭牌数据或测量的功率均指有功功率。
总目录 章目录 返回 上一页 下一页

4.3.2 电感元件的交流电路
1. 电压与电流的关系 di 基本关系式:u ? ? e L ? L

电工技术

i

+
u

eL L +

设: ? i
u ? L

2 I sin ω t
d( I m sin ω t )

dt

-

?
? u i

dt 2 I ω L sin ( ω t ? 90 ? )

2 U sin ( ω t ? 90 ? ) u i

90 ?

O

ωt

① 频率相同 ② U =I? L ③ 电压超前电流90?

相位差 ? ? ψ u ? ψ i ? 90 ?
总目录 章目录 返回 上一页 下一页

电工技术

i ? u?

2 I sin ω t 2 I ω L ? sin ( ω t ? 90 ? )

有效值: U ? I ? ω L

或 I ?

U

? L

定义: X L ? ? L ? 2? f L 则:
X L ? 2 π fL

感抗(Ω )

U ? I X

L

直流:f = 0, XL =0,电感L视为短路 XL 交流:f

? 电感L具有通直阻交的作用
总目录 章目录 返回 上一页 下一页

XL ?ω L? 2 π f L

I ,XL
I ? U 2 ? fL

电工技术
XL

感抗XL是频率的函数 根据: i ?
u? 2 I sin ω t

O
? U
? U

f

2 I ω L ? sin ( ω t ? 90 ? )
? U ? U 90 ? ? Iω L 90 ?

? 可得相量式:I ? I 0 ?

超前 I? 90 ?

则:

? U U ? ? I I

90 ? ? j ? L

? ? ? U ? j I ω L ? I ? (j X L )

相量图

? I

电感电路复数形式的欧姆定律
总目录 章目录 返回 上一页 下一页

电工技术

2. 功率关系 (1) 瞬时功率

i ? u?

2 I sin ω t 2 I ω L ? sin ( ω t ? 90 ? )

p ? i ? u ? U m I m sin ω t sin ( ω t ? 90 ? ) U m Im ? U m I m sin ω t cos ω t ? sin 2 ω t 2
? UI sin 2 ω t

(2) 平均功率
P ? ? 1 T 1 T

?o

T

p dt UI sin (2 ω t ) d t ? 0

?o

T

L是非耗 能元件

总目录 章目录 返回

上一页 下一页

p 分析:瞬时功率 : ? i ? u ? UI sin 2 ω t
u i

电工技术

o

ωt

i u 可逆的能量 转换过程 p +

u
+

i

u
+

i u +

i

结论: 纯电感不消 耗能量,只和 电源进行能量 交换(能量的 吞吐)。

+ p <0 + p <0
o

p >0

p >0

ωt

? 电感L是储 能元件。

储能 放能 储能 放能
总目录 章目录 返回 上一页 下一页

(3) 无功功率 Q 用以衡量电感电路中双向能量交换的规模。用瞬时 功率达到的最大值表征,即 (3) 无功功率 p ? i ? u ? UI sin 2 ω t Q
Q ?U I ? I XL ?U
2 2

电工技术

XL

单位:var

例1: 把一个0.1H的电感接到 f=50Hz, U=10V的正弦 电源上,求I,如保持U不变,而电源 f = 5000Hz, 这时I为多少?

总目录 章目录 返回

上一页 下一页

电工技术

解: (1) 当 f = 50Hz 时
X L ? 2 ? fL ? 2 ? 3.14 ? 50 ? 0.1 ? ? 31.4 Ω
I ? U X
L

?

10 31.4

? 318mA

(2)当 f = 5000Hz 时
X
L

? 2 ? fL ? 2 ? 3.14 ? 5000 ? 0.1 ? 3140 Ω

I ?

U X
L

?

10 3140

? 3.18mA

所以电感元件具有通低频阻高频的特性

总目录 章目录 返回

上一页 下一页

电工技术

例2:一只 L=20mH 的电感线圈,通以 i ? 5 2 sin(314 t ? 30 ? )A 的电流。 求:(1)感抗XL; (2)线圈两端的电压u; (3)有功功率和无功功率。 解: ( 1 ) X L ? ? L ? 314 ? 20 ? 10
?3

? 6 . 28 ?

( 2 ) U ? I X L ? 5 ? 6 . 28 ? 31 . 4 V

? u ? 31 . 4 2 sin( 314 t ? 30 ? ? 90 ? )
? 31 . 4
(3) P ? 0

2 sin( 314 t ? 60 ? ) V
Q ? U I ? 31 . 4 ? 5 ? 157 var

总目录 章目录 返回

上一页 下一页

4.3.3 电容元件的交流电路
1. 电流与电压的关系
i
du dt

电工技术

基本关系式: i ? C

+

设: ? 2 U sin ω t u
则:
i ? C du dt ?

u _

C

2 UC ω cos ω t

?
u i

2 U ω C sin( ω t ? 90 ? )
u i

电流与电压 的变化率成 正比。

90 ?

① 频率相同 ② I =U?C ωt ③电流超前电压90? 相位差 ? ? ψ u ? ψ i ? ? 90 ?
总目录 章目录 返回 上一页 下一页

u ? i ?

电工技术

2 U sin ω t 2 U ω C ? sin ( ω t ? 90 ? )

有效值

I ? U ?ω C


1 2π fC

U ?

1 ωC

I

定义: X ? 1 ? C
ωC

容抗(Ω )

则:
XC ? 1 2π f C

U ? I XC

直流: C X 交流:f

? ,电容C视为开路
XC

所以电容C具有隔直通交的作用
总目录 章目录 返回 上一页 下一页

电工技术

XC ?

1 2π fC

I , XC
XC ? 1 ω C

I ? U (2 π f C )

容抗XC是频率的函数 由
u ? i ? 2 U sin ω t

O

f

2 U ω C ? sin ( ω t ? 90 ? )
? I

? 可得相量式 U ? U 0 ?
? I ? I 90 ? ? j U ω C

? I? 超前 U 90 ?

则:
? U ? ?j

? I ω C

? ? ?jXCI

电容电路中复数形式的欧姆定律

相量图
总目录 章目录 返回

? U

上一页 下一页

2.功率关系

u ? i ? 2 U sin ω t 2 U ω C ? sin ( ω t ? 90 ? )

电工技术

i

+
u _ C

(1) 瞬时功率

(2) 平均功率 P
P ? ? 1 T 1 T

p ? i ? u ? U m I m sin ω t sin ( ω t ? 90 ? ) U m Im ? sin 2 ω t ? UI sin 2 ω t 2

? ?

T

p dt
0 T 0

C是非耗 能元件

UI sin (2 ω t ) d t ? 0
总目录 章目录 返回 上一页 下一页

p 瞬时功率 : ? i ? u ? UI sin 2 ω t
u,i o i u
ωt

电工技术

i
u p +

i
+

u -

u
+

i

u
+

i

结论: 纯电容不消 耗能量,只和 电源进行能量 交换(能量的 吞吐)。
所以电容C是储 能元件。

+ p <0
o

+ p <0
p >0
ωt

p >0

充电 放电 充电 放电
总目录 章目录 返回 上一页 下一页

(3) 无功功率 Q 为了同电感电路的无功功率相比较,这里也设
i ? 2 I sin ω t

电工技术

则:u ? 2 U sin ( ω t ? 90 ? )
所以 p ? ? UI sin2 ω t

同理,无功功率等于瞬时功率达到的最大值。
Q ? ? UI ? ? I
2

X

C

? ?

U X

2

C

单位:var
总目录 章目录 返回 上一页 下一页

【练习】 指出下列各式中哪些是对的,哪些是错的? 在电阻电路中: 在电感电路中: 在电容电路中:
I ?

电工技术



U R U

i?

× X

u

U
L



? j ω L

U ? I ?ω C
C

i ?

×R
u R
? U R

I ?



U ω L

? U ? jX ? I



× u×i ? X ?

L

i ?
? I ?

√ √

? U ? X ? I

? ? I ? U ? jω C
? U 1 ? ? I jω C

×

L

u ? L



di dt



i ?

×ω L

u



总目录 章目录 返回

上一页 下一页

电工技术

实际的电阻、电容 电阻的主要指标 1. 标称值 2. 额定功率 3. 允许误差 种类: 碳膜、金属膜、 线绕、可变电阻

电容的主要指标 1. 标称值 2. 耐压 3. 允许误差 种类: 云母、陶瓷、涤纶 电解、可变电容等

一般电阻器、电容器都按标准化系列生产。
总目录 章目录 返回 上一页 下一页

电工技术

电阻的标称值 误差 标 称 ? 10%(E12) 1.0、1.2、1.5、 1.8、2.2、2.7、 3.3、3.9、4.7、 5.6、6.8、8.2 ? 5% (E24) 1.0、1.1、1.2、1.3、 1.5、1.6、1.8、2.0、 2.2、2.4、2.7、3.0、 3.3、3.6、3.9、4.3、 4.7、5.1、5.6、6.2、 6.8、7.5、8.2、9.1等



电阻的标称值 = 标称值?10n
总目录 章目录 返回 上一页 下一页

电工技术

电阻器的色环表示法
四环 五环

有效
数字

倍 率 10n

误 差

有效 数字

倍 率 10n





黑、棕、红、橙、黄、绿、蓝、紫、灰、白、金、银
0 1 2 误差:? 1% 2 3 4 5 6 7 8 9 0.1 0.01

0.5 0.2 0.1
总目录 章目录 返回

5

10

上一页 下一页

电工技术

如电阻的4个色环颜色依次为: 绿、棕、金、金—— 表示 5 . 1 ? ? 5 % 的电阻 四环 五环

有效 数字

倍 率 10n

误 差

有效 数字

倍 率 10n

误 差

如电阻的5个色环颜色依次为: 棕、绿、黑、金、红—— 表示 15 . 0 ? ? 2 % 的电阻
总目录 章目录 返回 上一页 下一页

电工技术

单一参数电路中的基本关系
参数
阻抗
R

基本关系
u ? iR
di dt
du dt

相量式
? ? U ? IR
? ? U ? jX L I

相量图
? I
? U ? U

R L

jX L ? jω L u ? L

? I

C

? jX C ? ? j

1 ωC

i ?C

? ? U ? ? jX C I
? U
总目录 章目录 返回

? I

上一页 下一页

单一参数正弦交流电路的分析计算小结
电路 电路图 基本 阻抗 参数 (参考方向) 关系
i 设
i ?
u ? iR

电工技术
功 率

电压、电流关系 瞬时值 有效值
2 I sin ω t
U ? IR

相量图
I?

相量式

有功功率 无功功率

R

+ u i

U?

R


u ? 2 U sin ω t 2 I sin ω t

? ? U ? RI
u、 i 同相
? U

UI I R
2

0



L u

+
u? L

i ?
di dt

jX L


u ? 2 Iω L sin( ? t ? 90 ? )

U ? IX X
L

UI
L

? ?L

I?

? ? U ? jX L I

0

I X

2

L

-

u领先 i 90°
I?
U ? IX
C

i


i?C du dt

C

+ u -

? jX C

i ?

2 I sin ω t
2I 1 ωC

? UI



u ?

U?

? ? U ? ? jX C I

0

XC ? 1 /?c

-I XC

2

sin( ? t ? 90 ? )

u落后 i 90°
总目录 章目录 返回 上一页 下一页

电工技术

4.4 RLC串联的交流电路
i
+
R +

直流电路两电阻串联时
uR _
+ _ + uC _

U ? IR 1 ? IR 2

RLC串联交流电路中
i 设: ? 2 I sin ω t

u

L C

uL

_

U ? I R + I XL + I X C =
交流电路 U? 、I? 与参数R、L、C、 ? 间的关系如何?

总目录 章目录 返回

上一页 下一页

4.4 RLC串联的交流电路
1. 电流、电压的关系 i (1) 瞬时值表达式 + + 根据KVL可得: R uR _ u ? u R ? u L ? uC
u
+ L C _ + uC _

电工技术

uL

? iR ? L

di dt

?

1 C

? id t

i 设: ?

2 I sin ω t
2 IR sin ω t 2 I ( ω L ) sin ( ω t ? 90 ? ) 2I( 1 ωC ) sin ( ω t ? 90 ? )
总目录 章目录 返回 上一页 下一页

_

则u ?
? ?

为同频率 正弦量

电工技术

(2)相量法
? I

1)相量式
+
? UR

+
R
? U

_ + _ + _

? ? ? ? U ? UR ?UL ?UC ? 设 I ? I ? 0 ? (参考相量)
? ? 则 U R ? IR

jXL -jXC

? UL

? ? U L ? I (j X

L

)

_

? UC

? ? U C ? I ( ? jX C )
? ) ? I ( ? jX L
L

? ? ? U ? I R ? I (j X ? ? I ? R ? j? X

C

)

? X

C

??

总电压与总电流 的相量关系式

总目录 章目录 返回

上一页 下一页

? 根据 U ? I? ? R ? j ? X L ? X C ??

电工技术

令 Z ? R ? j ?X L ? X C ? 则
? ? U ? IZ

阻抗 复数形式的 欧姆定律
?? i ? Z

? U ?u U U Z ? ? ? ? I? I ?i I

u

?

Z 的模∣Z∣表示 u、i 的大小关系,辐角(阻 抗角) ? 为 u、i 的相位差。
注意

Z 是一个复数,不是相量,上面不能加点。
总目录 章目录 返回 上一页 下一页

电工技术

Z ? Z ?? ? R ? j ?X

L

? XC

?
2

阻抗模: Z ?

R ? (X L ? XC ) I XL ? XC ω L ? 1 /?C ? ? arctan 阻抗角: ? ψ u ? ψ i ? arctan R R
2

U

?

? 由电路参数决定。

电路参数与电路性质的关系:
当 XL >XC 时, ? > 0 ,u 超前 i 当 XL < XC 时 ,? < 0 , u 滞后 i 当 XL = XC 时 ,? = 0 , u. i 同相 呈感性 呈容性 呈电阻性
总目录 章目录 返回 上一页 下一页

电工技术

2) 相量图
? I

参考相量
? UL
? ? UL ?UC
? U

+
R
? U

+
? UR

? UL

jXL -jXC

? X > XC UL L

_ + _ + _

?

XL < XC
? UR
I?
? ? UL ?UC

?

? UR

I?

? U

_

? UC

? UC

( ? > 0 感性)

? UC

( ? < 0 容性)

? U
? ? ? UL ?UC ? U X

? UL
? ? U ?UR

I?

?
? UR

电压 三角形

XL =XC
U? C

( ? =0 阻性)
上一页 下一页

总目录 章目录 返回

2) 相量图
? U

电工技术

由电压三角形可得: U
? ? ? UL ?UC? U X

R

? U cos ?

U
U ? ? I ? I U
2 R 2

X

? U sin ?
L

?
? UR
Z

电压 三角形

? (U

?UC)

2

R ? (X R ? X
2 2

L

? XC)

2

?
R

X ? XL ? XC

阻抗 三角形

? I Z

由阻抗三角形: R ? Z cos ?
X ? Z sin ?

Z ?

R ? (X
2

L

? XC) ? XC R

2

? ? arctan

X

L

总目录 章目录 返回

上一页 下一页

2.功率关系

(1) 瞬时功率 设:i ? I m sin ω t

电工技术

i
+
R +

u ? U m sin ( ω t ? ? )
p ? u ? i ? U m sin ( ω t ? ? ) ? I m sin ω t

uR _
+ _ + uC _

u

L C

uL

? UI cos ? - UI cos( 2 ω t ? ? )

_

耗能元件上 的瞬时功率

储能元件上 的瞬时功率

在每一瞬间,电源提供的功率一部 分被耗能元件消耗掉,一部分与储能 元件进行能量交换。
总目录 章目录 返回 上一页 下一页

电工技术

(2) 平均功率P (有功功率)
P ? ? 1 T 1 T

?

T

pdt
T

0

?

[UI cos ? ? UI cos (2 ω t ? ? )]d t

0

? UI cos ?

单位: W

cos? 称为功率
因数,用来衡 量对电源的利 用程度。

所以 P ? UI cos ?

总电压

总电流

u 与 i 的相位差
总目录 章目录 返回 上一页 下一页

根据电压三角形可得:
P ? UI cos ? ? U R I ? I R
2

? U
? UX

电工技术

?
? UR

(3) 无功功率Q
Q ? U L I ? U C I ? (U
Q ? UI sin ?
L

电阻消耗 的电能

? U C )I ? I ( X
2

L

? XC)

根据电压三角形可得:

单位:var

电感和电 容与电源 之间的能 量互换

总电压

总电流

u 与 i 的相位差
总目录 章目录 返回 上一页 下一页

电工技术

(4) 视在功率 S 电路中总电压与总电流有效值的乘积。
S ? UI ? I
2

Z

单位:V· A

注: SN=UN IN 称为发电机、变压器 等供电设备 的容量,可用来衡量发电机、变压器可能提供的最 大有功功率。
S ? P
2

? Q

2

S ? P ?Q

? P、Q、S 都不是正弦量,不能用相量表示。

总目录 章目录 返回

上一页 下一页

电工技术

阻抗三角形、电压三角形、功率三角形 将电压三角形的有效值同除I得到阻抗三角形 将电压三角形的有效值同乘I得到功率三角形 S
U ? U R ? (U L ? U C )
2 2

? U
Z
XL ? XC

U U

R X

? U cos ? ? U sin ?
R ? (X
2

?
? XC)
2

U? L ? U? C

Q

Z ?

R
S ? P
2

? UR

P

L

R ? Z cos ? X ? Z sin ?

?Q

2

P ? S cos ? Q ? S sin ?

Q ? P tan ?
上一页 下一页

总目录 章目录 返回

例1: 在RLC串联交流电路中, 已知: R ? 30 Ω , L ? 127mH, C ? 40 μ F
u ? 220 2 sin ( 314 t ? 20 )V
?

电工技术

求: (1) 电流的有效值I与瞬时值 i ; (2) 各部分电压 的有效值与瞬时值;(3) 作相量图;(4)有功功率P 、无功功率Q。 解: X L ? ω L ? 314 ? 127 ? 10 ? 3 ? ? 40 Ω ,
XC ?
Z ?
2

1 ωC

?

1 314 ? 40 ? 10
2

-6

? ? 80 Ω ,
2

R ? (XL ? XC)

?

30

2

? (40 ? 80) ? ? 50 Ω ,
总目录 章目录 返回 上一页 下一页

方法1: U 220 (1) I ? ? A ? 4.4A
Z

电工技术

? ? arctan

50 X

L

? XC R

? arctan

40 - 80 30

? -53 ?

因为 ? ? ψ u ? ψ i ? -53 ? , 所以 ψ i ? 73 ?
i ? 4 .4 2 sin ( 314 t ? 73 ? )A

(2)

U R ? IR ? 4.4 ? 30V ? 132V

u R ? 132
U L ? IX
L

2 sin ( 314 t ? 73 ? )V
? 4.4 ? 40 V ? 176V

u L ? 176

2 sin ( 314 t ? 163 ? )V
总目录 章目录 返回 上一页 下一页

方法1:

电工技术
C

U C ? IX

? 4.4 ? 80 ? 352V

u C ? 352

2 sin ( 314 t ? 17 ? )V
I? ? UR ? UL 53
?

通过计算可看出:
U ?U
R

?U

L

?UC

? ? ? ? 而是 U ? U R ? U L ? U C (3)相量图 ? ? U ?U (4) P ? UI cos ? ? 220 ? 4.4 ? cos ( ? 53 ? )W
L C

? U

? 580.8W

? UC

或 P ? U R I ? I 2 R ? 580.8W
总目录 章目录 返回 上一页 下一页

电工技术

(4) Q ? UI sin ? ? 220 ? 4.4 ? sin ( ? 53 ? ) 呈容性 ? -774.4var 2 或 Q ? ( U L - U C ) I ? I ( X L ? X C ) ? -774.4var 方法2:相量计算 ? 解: U ? 220 20 ? V
Z ? R ? j( X
L

? X C ) ? ( 30 ? j40) ? ? 50 ? 53 ? Ω

? I ?

? U

? UR ? U
L

? UC

Z 50 - 53 ? ? ? R I ? 4.4 73 ? ? 30V ? 132 73 ? V ? j X L I? ? j4.4 ? 40 73 ? V ? 176 163 ? V ? ? ? j X I ? ? j4.4 ? 80 73 ? V ? 352 - 17 ? V
C
总目录 章目录 返回 上一页 下一页

?

220

20 ?

A ? 4.4 73 ? A

例2: 在RC串联交流电路中,
+ C
1

? I

电工技术

已知: R ? 2k Ω , C ? 0 . 1 μ F ? R U? U _ _ 输入电压 U 1 ? 1V, f ? 500Hz (1)求输出电压U2,并讨论输入和输出电压之间 的大小和相位关系 ;(2)当将电容C改为 20μF 时,求(1)中各项;(3)当将频率改为4000Hz时, 再求(1)中各项。
2

+

解:方法1:

(1)

XC ?

1 ωC
2

?

1 2 ? 3.14 ? 500 ? 0.1 ? 10
2
-6

? 3.2k Ω

Z ?

R ? XC

?

2 ? 3.2
2

2

? 3.77 k Ω ,
总目录 章目录 返回 上一页 下一页

电工技术

I ?

U1 Z

?

1 3.77

? 0.27mA

U 2 ? IR ? 0.27 ? 2 ? 0.54V ? XC - 3.2 ? ? arctan ? arctan ? -58 ? R 2 ? ? 大小和相位关系 U 2 ? 54%, U 2 比 U 1 超前 58 ? U1

方法2:相量计算 设:

? U 1 ? 1 0?V
58 ? V

2 2 ? ? RU ? ? U2 ? 1 0? ? ? 0.54 1 Z 2 ? j 3.2 3.77 ? 58 ?
总目录 章目录 返回

上一页 下一页

电工技术

方法3:相量图 ? 设: U 1 ?
? ? arctan
? XC R

? U2

I?

1 0?V
? arctan - 3.2 2 ? -58 ?
58 ?

? U1

U 2 ? U 1 cos ? ? 1 ? cos58 ? ? 0.54V
(2) X C ? 1 ωC ? 1 2 ? 3.14 ? 500 ? 20 ? 10
2 2
-6

? UC

? ? 16 Ω ? ? R

Z ?

R ? XC
? XC R

? 2 kΩ ,
? 0?
? ? U2 ? U1 I?

? ? arctan

U 2 ? U 1 cos ? ? U 1 ? 1V

总目录 章目录 返回

上一页 下一页

电工技术

(3) C X
Z ?

?

1 ωC
2

?

1 2 ? 3.14 ? 4000 ? 0.1 ? 10
2
-6

? ? 4 00 Ω

R ? XC

? 2.04 k Ω , ? ? arctan
1 1 .3
?

? XC
? U2

? -11.3 ?
I?

R
? U1

U 2 ? U 1 cos ? ? 0.98V

大小和相位关系 U 2 ? 98%,
U1

? UC

? ? U 2 比 U 1 超前 11 . 3 ?

从本例中可了解两个实际问题: (1)串联电容C可起到隔直通交的作用(只要选择 合适的C,使 X C ?? R ) (2)RC串联电路也是一种移相电路,改变C、R或 f 都可达到移相的目的。
总目录 章目录 返回 上一页 下一页

电工技术

1.假设R、L、C 已定,电路性质能否 确定?阻性?感性?容性? +
u
+ 2.RLC串联电路的 cos ? 是否一定小于1? R uR _ + 3.RLC串联电路中是否会出现 U ? U, R L uL _ + U L ? U, U C ? U 的情况? C uC _

i

_

4.在RLC串联电路中,当L>C时,u超前i ,当L<C时,u滞后i,这样分析对吗?

总目录 章目录 返回

上一页 下一页

电工技术

正误判断:在RLC串联电路中,
? I ? I 0? I ? Z ? UL ?UC ? ? arctan ? U UR ? I ? ?

?
?

U



I ?

U R ? X
L

?


C

? XC



Z

U ? U R ? U L ? U C?
R

I ?

U Z



? ? arctan

?

X

L

? X R R

? ? u ?u Z ?

? u L ? uC
L

? ?

i ?
? I ?

u Z
? U Z



? ? arctan

ω L?ω C

? R? X

? XC



? ? arctan

U

L

?UC U

?Z

? R ? j( X

L

? XC)?

总目录 章目录 返回

上一页 下一页

4.5 阻抗的串联与并联
4.5.1 阻抗的串联
? I

电工技术

+
Z1
? U

? ? ? ? ? U ? U 1 ? U 2 ? Z 1I ? Z 2I
+ +

-

? U1 ? U2

? ? ( Z 1 ? Z 2) I

Z2

Z ? Z1 ? Z2

? I ?

? U Z

? I

通式: Z ?

?Z

k

?

?R

k

? j? X k

注意: 一般 Z ? Z 1 ? Z 2

+
? U
Z

分压公式:
? U1 ? Z1 Z1 ? Z2 ? U

-

? U2 ?

Z2 Z1 ? Z2

? U

总目录 章目录 返回

上一页 下一页

电工技术

例1: 有两个阻抗 Z 1 ? 6.16 ? j9 Ω Z 2 ? 2.5 ? j4 Ω ? 它们串联接在 U ? 220 30 ? V 的电源; ? ? ? I 求: I? 和 U 1 、 U 2 并作相量图。
+
Z1
? U

+

+

? U1 ? U2

解: ? Z 1 ? Z 2 ? (6.16 ? 2.5) ? j(9 ? 4) Z
? 8.66 ? j5 ? 10 30 ? Ω

Z2

-

-

? I ?

? U Z

?

220 ? 30 ? 10 ? 30 ?

? 22 0 ? A
55.6 ? ? 22V

? ? U 1 ? Z 1 I ? (6.16 ? j9) ? 22V ? 10.9

? 239.8 55.6 ? V ? 同理:? 2 ? Z 2 I ? (2.5 ? j4) ? 22V ? 103.6 U

? 58 ? V
上一页 下一页

总目录 章目录 返回

电工技术

或利用分压公式:
? I

+
Z1
? U

+

? U1 ?

+

? U1 ? U2

? ? 6.16 ? j9 ? 220 U Z1 ? Z2 8.66 ? j5 Z1 55.6 ? V

30 ? V

? 239.8

Z2

-

-

? U2 ?

? ? 2.5 ? j4 ? 220 U Z1 ? Z2 8.66 ? j5 Z2 ? 58 ? V

30 ? V

? 103.6

相量图
55.6 ?

? U1
58 ? ? U
2

? ? ? 注意: U ? U 1 ? U 2
U ?U1?U
2

? U

30 ?

I?
总目录 章目录 返回 上一页 下一页

电工技术

下列各图中给定的电路电压、阻抗是否正确?
+ 3?
? U

+
V1 6V
? U

6?

V1 30V

_

4? (a)

V2

8V

_

8?
(b)
Z ? 14Ω

V2 40V

Z ? 7Ω

U=14V ?

U=70V ?

两个阻抗串联时,在什么情况下:
Z ? Z1 ? Z2

成立。
总目录 章目录 返回 上一页 下一页

4.5.2 阻抗并联
? I

? ? ? I ? I1 ? I2 ?

? U Z1
? 1 Z
1

?
?

? U Z2
1 Z
2

电工技术

+
? U

Z1

-

? I1

Z2

? I ?
? I2

? U Z
Z ?

1 Z

Z1 ? Z2 Z1 ? Z2
? 1 Zk
1 Z ? 1 Z1 ? 1 Z2

? I

+
? U
Z

通式:

1 Z

?

-

注意:对于阻抗模一般
Z2 Z1 ? Z2 ? I ? I2 ?

? 分流公式:I 1 ?

Z1 Z1 ? Z2

? I
上一页 下一页

总目录 章目录 返回

电工技术

例2: 有两个阻抗 Z 1 ? 3 ? j4 Ω Z 2 ? 8 ? j6 Ω ? 它们并联接在 U ? 220 0 ? V 的电源上; 求: I? 1 、 I? 2 和 I? 并作相量图。
? I

解: Z ?
?
? I2

Z1 ? Z2 Z1 ? Z2

?

5 53 ? ? 10 ? 37 ? 3 ? j4 ? 8 ? j6 ? ? 4.47

?

+
? U

50 16 ? 11.8
? U Z1 ? U Z2 ? ?

Z1

-

? I1

Z2

? 10.5 ?
220

26.5 ? Ω

? I1 ? ? 同理: 2 ? I

0? 0?

5 53 ? 220

A ? 44 A ? 22

? 53 ? A 37 ? A
上一页 下一页

1 0 ? 37 ?

总目录 章目录 返回

电工技术

? I ?

? U Z

?

220

0?

4.47 26.5 ?

? 49.2

? 26.5 ? A



? ? ? I ? I 1 ? I 2 ? 44 - 53 ? A ? 22 37 ? A ? 49.2 ? 26.5 ? A
? U
53 ?
26.5 ?

相量图
I? ? I2 ? I1

? ? ? 注意: I ? I 1 ? I 2
I ? I1? I2

37 ?

总目录 章目录 返回

上一页 下一页

电工技术

下列各图中给定的电路电流、阻抗是否正确?
? I ? I

4A A1 4A A2
4? 4?

4A A1 4A A2 4? 4?

(c)
Z ? 2Ω
1 Z ?

(d)

I=8A ? Z ? 2 Ω I=8A ? 两个阻抗并联时,在什么情况下:
1 Z1 ? 1 Z2
总目录 章目录 返回 上一页 下一页

成立。

电工技术

1. 图示电路中,已知

X

L

? X C ? R ? 2Ω

电流表A1的读数为3A,
试问(1)A2和A3的读数为多少?
+
? U

A1
L

A2
R

A3
C

(2)并联等效阻抗Z为多少?

-

总目录 章目录 返回

上一页 下一页

正弦交流电路的分析和计算
若正弦量用相量
? ? U、 I

电工技术

表示,电路参数用复数阻抗 ( ? R 、 L ? j ω L 、 C ? ? j 1 )表示,则直流电路中 R ω C 介绍的基本定律、定理及各种分析方法在正弦交流电 路中都能使用。

相量(复数)形式的欧姆定律
电阻电路 纯电感电路
? ? U ? IR
? ? U ? I (j X L )

纯电容电路
? ? U ? I (? j X C )

一般电路
? ? U ? IZ

相量形式的基尔霍夫定律
KCL

?

? I ? 0

KVL

?

? U ? 0
总目录 章目录 返回 上一页 下一页

有功功率 P = UIcos? 有功功率等于电路中各电阻有功功率之和, 或各支路有功功率之和。
P ?

电工技术

?
1

i

Ii Ri

2

或P ?

?
1

i

U i I i cos ?

i

无功功率 Q = UIsin? 无功功率等于电路中各电感、电容无功功率之 和,或各支路无功功率之和。
Q ?

?
1

i

Ii (X

2

Li

? X

Ci

)

或Q ?

?U
1

i

i

I i sin ?

i

根据功率三角形:

Q ? P ? tan ?

视在功率 S = UI

S ?

P

2

? Q

2

总目录 章目录 返回

上一页 下一页

电工技术

一般正弦交流电路的解题步骤
1、根据原电路图画出相量模型图(电路结构不变)
R? R ? u? U L ? jX L i ? I? C ? ? jX C ? e? E

2、根据相量模型列出相量方程式或画相量图 3、用相量法或相量图求解 4、将结果变换成要求的形式
总目录 章目录 返回 上一页 下一页

电工技术

已知: u ? 220 例1:

2 sin ω t V
L

R ? 50 Ω , R 1 ? 100 Ω , X

? 200 Ω , X C ? 400 Ω
? I

求: i , i 1 , i 2 分析题目: 已知电源电压和电路参数, 电路结构为串并联。求电流的瞬 时值表达式。 一般用相量式计算:
(1) ? Z1、 Z2 ? Z ? I ? i

+
? U

R
R1

jX

L

? ? - jX C I1 I2

-

(2)

? ? ? I ? I 1、 I 2 ? i 1 , i 2
总目录 章目录 返回 上一页 下一页

解:用相量式计算
? U ? 220 0? V
L

? I

电工技术

+
? U

50 Ω 100 Ω

Z 1 ? R 1? j X

? ( 100 ? j200) Ω

Z 2 ? ? j X C ? ? j 400 Ω
Z ? [ 50 ? (100 ? j200) ( ? j400) 100 ? j200 ? j400

? j200 Ω I 1

? I 2 - j400 Ω

] ? ( 50 ? 320 ? j 240) ? 440 33 ? Ω

? I ?

? U Z

440 33 ? Z2 ? j400 ? ? ?? I1 I ? 0.5 ? 33 ? Z1 ? Z2 100 ? j200 ? j400

?

220 0 ?

A ? 0.5 ? 33 ? A

? 0.89

- 59.6 ? A
总目录 章目录 返回 上一页 下一页

? I ? 0 . 5 ? ? 33 ? A

? I

电工技术

? I 1 ? 0 . 89 ? ? 59 . 6 ? A

+
? U

50 Ω 100 Ω

同理:I? 2 ?
?

Z1 Z1 ? Z2

I?

? j200 Ω I 1

? I 2 - j400 Ω

? 0.5 ? 33 ?

100 ? j200 100 ? j200 ? j400 93.8 ? A

? 0.5

所以

i ? 0.5

2 sin ( ω t ? 33 ? )A

i 1 ? 0.89
i 2 ? 0.5

2 sin ( ω t ? 59.6 ? )A
2 sin ( ω t ? 93.8 ? )A
总目录 章目录 返回 上一页 下一页

电工技术

例2: 下图电路中已知:I1=10A、UAB =100V, 求:总电压表和总电流表 的读数。
? I1

j10 Ω

? I

A

A
? I2

C1
j5 Ω

B



V 分析:已知电容支路的电流、电压和部分参数

求总电流和电压 解题方法有两种: (1) 用相量(复数)计算
(2) 利用相量图分析求解
总目录 章目录 返回 上一页 下一页

? I1

电工技术

j10 Ω

? I

A

A
? I2

C1
j5 Ω

B

已知:I1= 10A、 UAB =100V,
求:A、V 的读数



V 解法1: 用相量计算 U 设: ? AB 为参考相量, U AB ? 100 0 ? V 即:?
? 则: 2 ? [100 /( 5 ? j5 )] A ? 10 2 ? 45 ? A I

? I 1 ? 10

90 ? A ? j10 A

? ? ? I ? I 1 ? I 2 ? 10 0 ? A

所以A读数为 10安
总目录 章目录 返回 上一页 下一页

? I1

电工技术

j10 Ω

? I

A

A
? I2

C1
j5 Ω

B

已知:I1=10A、 UAB =100V,
求:A、V 的读数



V
? ? ? 因为 I ? I 1 ? I 2 ? 10 0 ? A ? ? 所以 U L ? I ( j10 )V ? j100 V

? ? U ? U

L

? ? U AB ? 100 ? j100V 2 45 ? V

? 100

? V 读数为141V
总目录 章目录 返回 上一页 下一页

? I1

电工技术

j10 Ω

? I

A

A
? I2

C1
j5 Ω

B

已知:I1=10A、 UAB =100V,
求:A、V 的读数



V

解法2: 利用相量图分析求解 ? 设 U AB 为参考相量, ? ? I 1 超前U I 1 ? 10A 90 ? AB
I2 ? 100 5 ?5
2 2

? I1

10

? 10

? I

2 A,
10

? U AB

45°
2

? ? I 2 滞后 U AB 45 °

由相量图可求得: I =10 A

? I2

总目录 章目录 返回

上一页 下一页

? I1

电工技术

j10 Ω

? I

A

A
? I2

C1
j5 Ω

B

已知:I1=10A、 UAB =100V,
求:A、V 的读数
? UL
? U



V 设
? U AB 为参考相量,
? I1

UL= I XL =100V
? ? U L 超前 I 90 °

100 10

由相量图可求得:
10

? I 45° ? U AB 45° 100
2

V =141V

? I2
总目录 章目录 返回 上一页 下一页

已知 U ? 200 V, R ? X L , 例3: 开关闭合前 I ? I 2 ? 10 A , + 开关闭合后 u,i 同相。 ? U 求: I, R, X L , X C 。 –
解:(1)开关闭合前后I2的值不变。
I2 ? U Z ? 200 R ? XL
2
L

XC
? I
? I1

S XL
? I2

电工技术

R

I? 1

?
2

200 2R

? 10 A
? I

所以 R ? X

?

200 10 2

? 10



45

?

U?

由相量图可求得: ? I 2 cos 45 ? ? 5 2 A I
I 1 ? I 2 sin 45 ? ? 10 ? sin 45 ? ? 5 2A
总目录 章目录 返回

I? 2

上一页 下一页

(2)用相量计算 设:

I 1 ? I 2 sin 45 ? ? 10 ? sin 45 ? ? 5 2 A XC S U 200 XC ? ? ? 20 2 Ω ? ? I1 I I1 5 2 + R XL
? U ? 200 0 ? V,
? U

电工技术



? I2

? 因为 R ? X L,所以 I 2 ? 10 ? 45 ? A
? ? Z 2 ? U / I 2 ? ( 220 0 ? / 10 ? 45 ? ) ? ? 22 45 ? Ω

? 所以 I ? I 0 ? A ∵开关闭合后 u,i 同相,

? ? ? ? I ? I 1 ? I 2 所以 I 0 ? ? I 1 90 ? ? 10 ? 45 ?

由实部相等可得 I ? I 2 cos45 ? A 由虚部相等可得 I 1 ? I 2 sin 45 ? A
总目录 章目录 返回 上一页 下一页

例4: 图示电路中已知:
i 1 ? 22 sin (314 t ? 45 ? ) A

u ? 220
i 2 ? 11

2 sin 314 t V

电工技术

2 sin (314 t ? 90 ? ) A

试求: 各表读数及参数 R、L 和 C。

解:求各表读数 (1)相量计算
U ? 220 V 22 I1 ? ? 15.6 A 2 I 2 ? 11 A

i
A

+
u
V

A1

A2

R L

i1 C

i2

-

? ? ? I ? I 1 ? I 2 ? 15.6
所以 I ? 11 A

? 45 ? ? 11 90 ? A ? 11 A

总目录 章目录 返回

上一页 下一页

(2) 相量图
45
?

A

i
A1

电工技术 A2

I?

? U

+
u V
R

? I2
I? 1

? UL

L

i1 C

i2

? UR

-

根据相量图可得: ? 15.6 2 ? 11 2 A ? 11 A I 求参数 R、L、C UR U 220 R ? XL ? ? V 方法1: U R ? U L ?
2 2
I1
L ? X 2π f
L

? 10 ?

? 0.0318

H

X

C

?

U I2

? 20 Ω

C =

1 2π f XC

=

1 314 × 20

= 159 μ F
上一页 下一页

总目录 章目录 返回

方法2:

? U 220 0 ? Z1 ? ? ? ? 10 ? j10 Ω ? I 1 15.6 ? 45 ?
L ? X
L

电工技术

? R ? X L ? 10 Ω ? U 220 0 ? Z2 ? ? ? ? 20 ? I2 11 90 ?
C ? 1 2π f XC ? 1 314 ? 20

2π f

? 0.0318

H

? 90 ? Ω

所以 X C ? 20 Ω

? 159 μ F

Z

X
?

L

方法3:

Z1 ?

U I1

? 14.1 Ω

45
L ?
1 2π f XC

R ? Z 1 cos 45 ? ? 10 Ω X
L

R
X 2π f
=
L

? Z 1 sin 45 ? ? 10 Ω
U I2 ? 20 Ω
C =

? 0.0318
1 314 × 20

H

Z2 ? XC ?

= 159 μ F
上一页 下一页

总目录 章目录 返回

电工技术

例5: 图示电路中,已知:U=220 V,?=50Hz,分析下列情况:
(1) S打开时, P=3872W、I=22A,求:I1、UR、UL (2) S闭合后发现P不变,但总电流减小,试说明 Z2是什么性质的负载?并画出此时的相量图。 解: (1) S打开时: I 1 ? I ? 22 A
P ? UI cos ?
cos ? ?
所以 U
? I

+ +
R1

S
? I1
Z2

P UI

?

3872 220 ? 22

? 0.8

? U

X

L

? I2

-

R

? U ? cos ? ? 220 ? 0.8V ? 176 V

U

L

? U ? sin ? ? 220 ? 0.6V ? 132 V
总目录 章目录 返回 上一页 下一页

方法2: I 1 ? I ? 22 A
R ? P I
2

Z ?

U I

电工技术

? 10 Ω
? I

?

3872 22
2

?8Ω
2

+ +
R1

S
? I1
Z2

XL ?
U L ? IX

Z

2

? R ? 6Ω

? U

X

L

? I2

所以 U R ? IR ? 22 ? 8V ? 176 V
L

? I2
U?

? 22 ? 6V ? 132 V

(2) 当合K后P不变 I 减小, 说明Z2为纯电容负载 相量图如图示:

? I

? I1
总目录 章目录 返回 上一页 下一页

已知 U ab ? U bc , R ? 10 ? , X c ? 10 ? , 例6: Zab为感性负载。 ? I -jXC ? ? 求: U 和 I 同相时的 Z ab 。 a + Z b
解: 令 Z ab
又 Z bc ?
? R1 ? jX L ,

电工技术

? j RX R ? jX

C C

?

? j10 ? 10 10 ? j10

c–
? 5 ? j5 ?

? U

ab

R

? Z ac ? Z ab ? Z bc ? [( 5 ? j5 ) ? ( R 1 ? j X L )] ? [( 5 ? R 1 ) ? j( X

L

? 5 )]

? ? U 和 I 同相,则 Z 的虚部为零。 ? X L ? 5 ? 0

故X
2

L

? 5?
2 2

? U ab ? U bc
? R1 ? 5?

? Z ab ? Z bc



R1 ? X L ?
2

5 ?5

故 Z ab ? 5 ? j 5 ?
总目录 章目录 返回 上一页 下一页

例7:RC移相电路,C = 0.01μF
输入电压 u1 ? 2 sin 6280 t V

电工技术

今欲使输出电压u2在相位上前移60°,

问应配多大的R?输出电压U2 =?
? 解:以 I 为参考相量,画相量图

tg 60 ? ?

UC U2

?

XCI RI

?

XC R

C i 。 ++u – u1 c –
60 ?

R
? U2

+ u2 –
? I

? R ?

XC

tg60 ?

?

1

? C tg 60 ?

? 9 .2 k ?

U 2 ? U 1 ? cos 60 ? ? 1 ? cos 60 ? ? 0 . 5 V
? UC

? U1
上一页 下一页

总目录 章目录 返回

电工技术

例8:负载1:40W、cos?1= 0.5 的日光灯100只, 负载2:100W的白炽灯40只。已知:U =220V。求: 电路的总电流 I 和总功率因数cos? 。 解: [解法一] + I P1 I1 I2 I1= = 36.4 A U cos?1 Z1 Z2 U P2 I2= = 18.2 A U cos?2 - 设: U = 220∠0°V Z1= R1+ jXL °A,I =18.2∠0°A 则: I1 =36.4∠-60 2 Z =R
2 2

I = I1+I2 =48.15∠-40.9°A I = 48.15A, cos? = cos40.9°= 0.756
总目录 章目录 返回 上一页 下一页

电工技术

[解法二] P = P1+P2 = 40×100 +100×40 = 8 000 W Q = Q1+Q2

+ I

I1

I2




Z1

Z2

= P1tan?1+P2tan?2 = 40×100 tan60o +0 = 6 928.2 var
S =√P 2 +Q2 = 10 583 V· A

cos? = P S = 0.756

则: I = S = 48.15A U
总目录 章目录 返回 上一页 下一页

4.6 复杂正弦交流电路的分析与计算

电工技术

同第2章计算复杂直流电路一样,支路电流法、 结点电压法、叠加原理、戴维宁等方法也适用于计 算复杂交流电路。所不同的是电压和电流用相量表 示,电阻、电感、和电容及组成的电路用阻抗或导 纳来表示,采用相量法计算。下面通过举例说明。 例1: 图示电路中,已知
? U 1 ? 230 ? 0 ? V, U 2 ? 227 0 ? V,
? I1 ? I2

Z 1 ? Z 2 ? ( 0.1 ? j0.5) Ω, Z 3 ? ( 5 ? j5) Ω

+
? U1

Z1

Z2
? I3

+

-

Z3

-

? U2

试用支路电流法求电流 I3。

总目录 章目录 返回

上一页 下一页

解:应用基尔霍夫定律列出相量表示方程
? ? ? I1 ? I 2 ? I 3 ? 0 ? ? ? Z 1I1 ? Z 3 I 3 ? U 1
? ? ? Z2I2 ? Z3I3 ? U 2
? I1 ? I2
Z2
? I3

电工技术

+
? U1

Z1

+

-

Z3

-

? U2

代入已知数据,可得:
? ? ? I1 ? I 2 ? I 3 ? 0 ? ? (0.1 ? j0.5) I 1 ? (5 ? j5) I 3 ? 230 0?V

? ? (0.1 ? j0.5) I 1 ? (5 ? j5) I 3 ? 227

0?V

解之,得:? 3 I

? 31.3

- 46.1 ? A
总目录 章目录 返回 上一页 下一页

例2: 应用叠加原理计算上例。
? 解: (1) 当 U 1 单独作用时

? I1

电工技术 ? I2
Z2
? I3

+
? U1

Z1

+

? I ′= 3

? U1 Z 1 + Z 2 // Z 3

×

Z2 Z2 + Z3

-

Z3

-

? U2

= +
? U1
Z1 Z2
?? I3

? 同理(2)当 U 2

单独作用时
? Z1 Z1 ? Z3

?? I 3? ?

? U2 Z 2 ? Z 1 // Z 3

Z1

Z3

+
Z2
?? I 3?

? ?? ?? I 3 ? I 3 ? I 3? ? 31.3 - 46.1 ? A

+

Z3

-

? U2

总目录 章目录 返回

上一页 下一页

例3: 应用戴维宁计算上例。
? 解:(1)断开Z3支路,求开路电压 U 0
? I1
Z1

电工技术
? I2
Z2
? I3

? Uo ?

? ? U1 ?U2 Z1 ? Z2

? ? Z2 ?U2

+
? U1

+

? 228.85

0?V

? I

Z3

-

? U2

(2)求等效内阻抗 Z 0
Zo ? Z1Z 2 Z1 ? Z2
? U0 Z0 ? Z3

+
? U1

?

Z1 2

Z1

? U0

+

Z2

+

Z1

-

Z2

? U2

? ( 0.05 ? j0.25) Ω

(3)

? I3 ?

? 31.3

? 46.1 ? A

Z0

总目录 章目录 返回

上一页 下一页

4.7 交流电路的频率特性

电工技术

前面几节讨论电压与电流都是时间的函数, 在 时间领域内对电路进行分析,称为时域分析。本节主 要讨论电压与电流是频率的函数;在频率领域内对 电路进行分析, 称为频域分析。 当电源电压或电流(激励)的频率改变时,容 抗和感抗随之改变,从而使电路中产生的电压和电 流(响应)的大小和相位也随之改变。 频率特性或频率响应: 研究响应与频率的关系

幅频特性: 电压或电流的大小与频率的关系。 相频特性: 电压或电流的相位与频率的关系。
总目录 章目录 返回 上一页 下一页

4.7.1 滤波电路

电工技术

滤波:即利用容抗或感抗随频率而改变的特 性, 对不同频率的输入信号产生不同的响应, 让 需要的某一频带的信号通过, 抑制不需要的其它 频率的信号。 滤波电路主要有: 低通滤波器、高通滤波器、带通滤波器等。
1.低通滤波电路 (1) 电路
U
1

R

+
U
1

+
C
U 2 ? jω ?

? j ω ? 输入信号电压

? jω ?




U 2 ? j ω ? 输出信号电压

均为频率的函数
总目录 章目录 返回 上一页 下一页

(2) 传递函数(转移函数) 电路输出电压与输入 电压的比值。
1 T ? jω ? ? U

R

电工技术

+
U 1? jω ?

+
C
1
U 2 ? jω ?

? jω ? ? U 1? jω ?
2


1 ? 1? j ω RC



j ωC R? j ωC
1

设: ? o ? 则: T ? j ω ? ?

1 RC
1 1? j ω

?

? ? arctan
2

ω ωo

ω o

? ω ? ? 1? ? ?ω ? ? o ?

? T ? j ω ? ? ?ω ?
总目录 章目录 返回 上一页 下一页

频率特性
T ? jω ? ? 1 1? j ω ω0 ? 1 ? arctan
2

电工技术
ω ω0

? ω ? 1?? ? ?ω ?
0

幅频特性:

T ? jω ? ? 1?

1



RC

?

?

1

2

? ω ? 1?? ? ?ω ?
0

2

? 相频特性:?ω ? ? ? arctan

(ω R C ) ? ? arctan

ω

ω0

(3) 特性曲线

?
T ? jω ?

0 1
0?

?0
0.707
- 45 ?

? 0
- 90 ?
总目录 章目录 返回 上一页 下一页

? ??

?

频率特性曲线

电工技术
T

? j? ?

?
T ? jω ?

0

?0
0.707
- 45 ?

?

0.707 0
? ??

1

1
0?

0
- 90 ?

? ??

?
+


?

?0

?

U

1

? jω ?

R
C

U 2 ? jω ?

+


0
- 45 ? - 90 ?

?0

?

当? <?0时,|T(j? )| 变化不大接近等于1; 当? >?0时,|T(j? )|明显下降,信号衰减较大。 一阶RC低通滤波器具有低通滤波特性
总目录 章目录 返回 上一页 下一页

频率特性曲线
通频带: 0< ? ??0 截止频率: ?0=1/RC +
– R C

T

? j? ?

电工技术

0.707

1

0
? ??

U

1

? jω ?

U 2 ? jω ?

+


?

?0

?

0
- 45 ? - 90 ?

?0

?

通频带: 把 0< ? ??0的频率范围称为低通滤波电路的通频 带。?0称为截止频率(或半功率点频率、3dB频率)。
总目录 章目录 返回 上一页 下一页

2. 高通滤波电路
(1) 电路
(2) 频率特性(转移函数) + C R U 1? jω ?

1 1? j
?
2

电工技术

+ U 2 ? jω ?


? jω ? T ? jω ? ? ? U 1? jω ?
U
2

R R? 1 jω C
1

?

1 ωRC
1

幅频特性:T ? j ω ? ?

? 1 ? 1?? ? ? ?C ?

? ω0 ? 1?? ? ? ω ?
? arctan ω0 ω

2

相频特性:? ?ω ? ? arctan

1 ωRC

总目录 章目录 返回

上一页 下一页

(3) 频率特性曲线

T

? j? ?

电工技术

?
T ? jω ?

0 1
90 ?

?0
0.707
45 ?

? 0
0?

1 0.707 0
? ??

? ??

?

?

?0

?

通频带: ?0??<? 截止频率: ?0=1/RC

90 ? 45 ?

0

当? <?0时,|T(j? )| 较小,信号衰减较大; 当? >?0时,|T(j? )|变化不大,接近等于1。 一阶RC高通滤波器具有高通滤波特性
总目录 章目录 返回

?0

?

上一页 下一页

电工技术

3. 带通滤波电路 (1) 电路 U 1 ? j ω ? 输入信号电压
U
2

+
? jω ?

R
C + R C
U 2 ? jω ?

? j ω ? 输出信号电压
R jω C

U

1

(2) 传递函数


1 3 ? j( ω R C ?



T ? jω ? ?

U U

2 1

? jω ? ? jω ?

R? ? R? 1 jω C

1 jω C R ? jω C R? 1 jω C
总目录 章目录 返回 上一页 下一页

?

1 ωRC

)

频率特性
T ? jω ? ?

设: ω
1

? 0

1 RC
? 1

电工技术
ω ω 0 ) 3 ? j( ? ω ω 0 ω ω 0 ? ω ω 0 ? arctan 3

3 ? j( ω R C ?

1 ) ω RC

? 2 3 ?

1

幅频特性:

T

? jω ?

? ? ? ?

ω ω0
?

?

ω0 ω

? ? ? ?

2

1
2 0

相频特性:
? ? ω ? ? ? arctan

ω

ω ? ? ω ? ? 3 ?? ω ? ? ω
2 0

ω0

? 3

ω0 ω

总目录 章目录 返回

上一页 下一页

3.3 频率特性曲线

电工技术
T ? jω ?

?
T ? jω ?

0

?0
1/3
0?

?

1 3 0 . 707 3

1
90 ?

0
- 90 ?

? ??

?
+
U

0

R C + R C
U
2

?1 ?0 ?2
? ??

?

?

1

? jω ?


90 ?

? jω ?

0
- 90 ?



?0

?

RC串并联电路具有带通滤波特性
总目录 章目录 返回 上一页 下一页

电工技术

由频率特性可知 在 ?=?0 频率附近, |T(j? )| 变化不大接近等 于1/3;当?偏离?0时,|T(j? )|明显下降,信号衰减较 大。 通频带:当输出电压下降到输入电压的70.7%处, (|T(j? )|下降到 0.707/3 时),所对应的上下限频率 之差即:

△ ? = ( ? 2- ? 1)
1

仅当 ω ? ω 0 ? RC 时,? 1 与 U? 2 同相,U2=U1/3 为最大 U 值,对其它频率不会产生这样的结果。因此该电路具 有选频作用。常用于正弦波振荡器。
总目录 章目录 返回 上一页 下一页

4.7.2 谐振电路

电工技术

谐振的概念: 在同时含有L 和C 的交流电路中,如果总电压和 总电流同相,称电路处于谐振状态。此时电路与电 源之间不再有能量的双向交换,电路呈电阻性。 串联谐振:L 与 C 串联时 u、i 同相 并联谐振:L 与 C 并联时 u、i 同相

研究谐振的目的,就是一方面在生产上充分利 用谐振的特点,(如在无线电工程、电子测量技术等 许多电路中应用)。另一方面又要预防它所产生的危 害。
总目录 章目录 返回 上一页 下一页

电工技术

1. 串联谐振
串联谐振电路

(1) 谐振条件
? ? 由定义,谐振时:U 、I 同相

i
+
R

+



? ? arctan

X

L

? XC R

? 0

uR _
+ _ + uC _

谐振条件: X 或: ? o L ?
1

L

? X

C

u

L C

uL

? oC

谐振时的角频率

_

(2) 谐振频率
根据谐振条件:ω o L ?
1 ωo C
上一页 下一页

总目录 章目录 返回

电工技术

(2)谐振频率 或: 2 ? f 0 L ?
?0 ?
1 LC

1 2? f 0 C

可得谐振频率为:
f0 ? 1 2? LC



电路发生谐振的方法:
1)电源频率 f 一定,调参数L、C 使 fo= f; 2)电路参数LC 一定,调电源频率 f,使 f = fo (3)串联谐振特怔 2 2 1) 阻抗最小 Z ? R ? (X L ? XC ) ? R
总目录 章目录 返回 上一页 下一页

2) 电流最大
当电源电压一定时:I ? I 0 ?
? ? 3) U 、 I 同相
? ? arctan
U R XL ? XC
R

电工技术

? 0

电路呈电阻性,能量全部被电阻消耗, L 和 Q C 相互 Q 补偿。即电源与电路之间不发生能量互换。 4) 电压关系 电阻电压:UR = Io R = U 电容、电感电压:? L ? ? U? C U
U L ? I0 X L ? U C ? I0 X C
总目录 章目录 返回 上一页 下一页

大小相等、相 位相差180?

电工技术

当X

L

? X

C

?? R 时:
R

有: L U

? U C ?? U

?U

UC 、UL将大于 电源电压U

由于 U L ? U C ?? U 可能会击穿线圈或电容的 绝缘,因此在电力系统中一般应避免发生串联谐 振,但在无线电工程上,又可利用这一特点达到 选择信号的作用。 令:
Q ? U U
L

?

UC U

?

? 0L
R

?

1

? 0 RC

Q 品质因数,表征串联谐振电路的谐振质量
总目录 章目录 返回 上一页 下一页

电工技术

有: U

L

? U C ? QU

所以串联谐振又称为电压谐振。

谐振时: U? 与 U? C 相互抵消,但其本
L

身不为零,而是电源电压的Q倍。
U
L

? I0 X

L

?
?

? 0L
R 1

U ? QU
U ? QU

? U

L

相量图:
? ? UR ?U

U C ? I0 X

C

? 0 CR

如Q=100,U=220V,则在谐振时
U
L

I?

? U C ? QU ? 22000V
? UC
上一页 下一页

所以电力系统应避免发生串联谐振。

总目录 章目录 返回

电工技术

(4) 谐振曲线 1) 串联电路的阻抗频率特性 阻抗随频率变化的关系。
Z ? R ? j( X L ? X C )
Z ? R ? ? L? 1
2

X L ? 2? f L
XC ? 1 2 ? fc
X
L

?

? ? C

2

XC

? ??
? ??
? ??

0

? Z ? ? Z ? R
? Z ?

Z

容性
(? ? ? 0 )

0

(? ? ? 0 )

感性

R

0

0
f0
总目录 章目录 返回

f
上一页 下一页

2) 谐振曲线
电流随频率变化的关系曲线。
I (? ) ? U Z ? U R ? (? L - 1 ? C )
2 2

电工技术

Z , I

? I0
I0

Q大
Z

谐振电流 分析:
R ?

I0 ?

U R

Q小

I0 ?
Q ??

? 0L
R ?
0

f0

f

电路具有选择最接近谐振频率附近的电流的能力 ——称为选择性。 Q值越大,曲线越尖锐,选择性越好。
总目录 章目录 返回 上一页 下一页

电工技术

通频带: 当电流下降到0.707Io时所对应的上下限频率之 差,称通频带。即: △?= ?2-?1
f 0 : 谐振频率
I
I0
0.707 I 0

Q大
Q小
? f
f1 f0 f2

f 1 : 下限截止频率
f2 :

上限截止频率
f

通频带宽度越小(Q值越大), 0 选择性越好,抗干扰能力 越强。

总目录 章目录 返回

上一页 下一页

(5)串联谐振应用举例 接收机的输入电路
R
L

电工技术

+

L1

L

C

e1 e2

f1 f2

C

uC

调C,对 所需信号 频率产生 串联谐振

电路图
L 1 :接收天线

则 I 0 ? I max ? - U C ? QU 最大

e3

f3

LC :组成谐振电路

等效电路

e 1、 e 2、 e 3 为来自3个不同电台(不同频率)

的电动势信号;
总目录 章目录 返回 上一页 下一页

电工技术

例1: (1) 若要收听 e 1节目,C 应配多大?
R
L

+

已知:L ? 0.3m H 、 R ? 16 Ω
f 1 ? 640kHz

e1 e2

f1 f2

C

uC

解: f 0 则:C
1
?

? f1 ?
1

1 2π
2

LC

e3

f3

-

?2

π f0 ? L

C ?

?2 π ? 640

? 10

3

?

2

? 0.3 ? 10

?3

? 204pF

结论:当 C 调到 204 pF 时,可收听到 e 1 的节目。
总目录 章目录 返回 上一页 下一页

例1:
R
L

电工技术

(2)e 1 信号在电路中产生的电流 有多 + 大?在 C 上 产生的电压是多少?

已知: E 1 ? 2 μ V
f1 f2

e1 e2

C

uC

解:已知电路在 f 1
时产生谐振

? 640kHz

e3

f3

-

这时 I ? E 1 / 16 ? 0.13 μ A

所需信号被放 大了78倍

X L ? X C ? ω L ? 2 π f 1 L ? 1200 Ω

U C 1 ? IX C ? 156 μ V

Q ?

U C1 E1

?

156 2

? 78
上一页 下一页

总目录 章目录 返回

2. 并联谐振
? I

1. 谐振条件
1 Z ? jω C 1 jω C ? ( R ? jω L ) ? ( R ? jω L ) R ? jω L 1 ? j ω RC ? ω LC
2

电工技术

+
R

? U

XC
? I1
? IC

X

L

-

实际中线圈的电阻很小,所以在谐振时有 ω 0 L ?? R
则:Z ?
jω L 1 ? ω LC ? j ω R C
2

?

1 RC L ? j( ω C ? 1
总目录 章目录 返回

ωL

)

上一页 下一页

(1) 谐振条件
由: ? Z
jω L 1 ? ω LC ? j ω R C
2

电工技术

?

1 RC L
1 ω0 L

? j (ω C ? 1

可得出:
谐振条件 : ω 0 C ?

ω L



? 0

(2) 谐振频率

ω0 ?

1 LC


L

f ? f0 ?

1 2 ? LC

(3)并联谐振的特征
1) 阻抗最大,呈电阻性 Z 0 ? (当满足 ? 0L ?? R时)
RC
总目录 章目录 返回 上一页 下一页

电工技术

2)恒压源供电时,总电流最小;
I ? I0 ? U L RC ? U Z0
Z ,I
Z0

Z
I

恒流源供电时,电路的端电压最大。
U ? IS Z 0
I0

3)支路电流与总电流 的关系

ω0

?

当? 0L ?? R时,
I1 ? U R ? (2 π f 0 L )
2 2

?

U 2π f0 L
总目录 章目录 返回 上一页 下一页

电工技术

IC ?

U 1 2 π f 0C

? U ? 2 π f 0C

相量图
? IC

IC I0

?

U ( 2? f 0 C ) U Z0
?

?

U ( 2? f 0 C ) U L RC

?

2? f 0 L R

? 0L
R

?1

? I

? U

? Q
I? 1

? I 1 ? I C ? QI

0

支路电流是总电流的 Q倍 ? 电流谐振
总目录 章目录 返回 上一页 下一页

例2: 已知: L ? 0 . 25 m H 、 R ? 25 Ω 、 C ? 85pF
试求: ω
O

电工技术

解: ω

0

?

、 Q 、Z O 1 1 ? LC 0.25 ? 85 ? 10
6

? I

+
? 15

R

? U

XC
? I1
? IC

? 6.86 ? 10 rad/s
ω L 6.86 ? 10
6

X

L

? 0.25 ? 10 25
?3 -12 ?3

Q ?

0

? L

? 68.6

R Z0 ? ?

0.25 ? 10

RC

25 ? 85 ? 10

? 117K Ω

总目录 章目录 返回

上一页 下一页

电工技术

电路如图:已知 R=10 ?、IC=1A、?1 =45? 例3: ? (U , I? 间的相位角)、?=50Hz、电路处于谐振状态。
1

试计算 I、I1、U、L、C之值,并画相量图。
? I

+
R

? IC
XC
? I1
? IC

? I

? U
? UL

? U

45

?

X

L

? I 解:(1) 利用相量图求解 相量图如图: U? R I 由相量图可知电路谐振,则:1 sin ? 1 ? I C 因为 I C ? 1A
1

所以 I 1 ?

IC sin 45 ?

? 1.414 ?

2A

I ? IC ? 1 A
总目录 章目录 返回 上一页 下一页

例3: ? 又: 1 ? 45 ?、 R ? 10 Ω
所以 X
L

电工技术

? R ? 10 Ω L ?
R ? XL?
2 2

X

L

2π f

?

10 314

H ? 0.0318

H

所以 U ? I 1
X ? U I2 ? 20 1

2 ? 10

2 V ? 20 V
1 2 πfX
C

C

? ? 20 Ω

所以 C ?

? 159 μ F

(2) 用相量法求解 设: ? ? U 0 ? V U
? ? ? 因为 I ? I 1 ? I C

I 则:? C ? 1 90 ? A
?

所以

I 0 ? I 1 ? 45 ? 1 90 ? A
总目录 章目录 返回 上一页 下一页

?

电工技术

例3:图示电路中U=220V,

C ? 1μ F

(1)当电源频率ω 1 ? 1000rad/s 时,UR=0 (2)当电源频率ω 2 ? 2000rad/s 时,UR=U 试求电路的参数L1和L2

I?
L2

解: (1)因为

+
? U

U

R

? 0

即:I=0

L1
R

C

所以 L 1 C 并联电路产生谐振,

-

即: Z 0 ?

L1 R 1C
1

? ?

故: ω 1 L 1 ?
1

1 ω 1C

所以 L 1 ?

ω1

2

? 1000

2

? 1 ? 10

?6

H ? 1H

总目录 章目录 返回

上一页 下一页

(2)当电源频率ω 2 ? 2000rad/s 时,UR=U 试求电路的参数L1和L2 (2) 因为 U R ? U, 所以电路产生串联谐振,
L1 C

电工技术

并联电路的等效阻抗为:
1 jω 2 C 1 (j ω 2 L 1 ) ? ?j ω 2 L1 ω 2 L1 C - 1
2

I?
L2

+
? U

L1
R

C

Z1 ?

-

jω 2 C

? ( j ω 2 L1 )

总阻抗 Z ? R ? j ω 2 L 2 ? Z 1 ? R ? j ( ω 2 L 2 ? 串联谐振时,阻抗Z虚部为零,可得:
L2 ? 1 ω 2 C ? 1 L1
2

ω 2 L1 ω 2 L1 C - 1
2

)

? 2000

1
2

? 1 ? 10

?6

?1

H ? 0.33H
总目录 章目录 返回 上一页 下一页

思考题: 如图电路中,已知:
? E S ( ω s ) ---信号源

滤波 电路
? + ES ? + EN

电工技术

C

R

L

? E N ( ω N ) ---噪声源

-

fN

(1)现要求在接收端消 除噪声,问图(a)LC并联 滤波 电路应工作在什么频 电路 率下? R (2)现要求工作信号到 ? 达接收端,问图(b)LC串 E + 联电路应工作在什么 ? + E 频率下?
S N

fS

接 收 网 络

(a)
L

C

fN

fS

接 收 网 络
上一页 下一页

(b)
总目录 章目录 返回

4.8 功率因数的提高

电工技术

1.功率因数 co s ? : 对电源利用程度的衡量。 ? 的意义:电压与电流的相位差,阻抗的辐角
+
? U

? I Z

? U
?
? I

Z

Z ? R ? jX

?
R

X

当cos ? ? 1 时,电路中发生能量互换,出现无功
功率 Q ? UI sin ? 这样引起两个问题:

总目录 章目录 返回

上一页 下一页

电工技术

(1) 电源设备的容量不能充分利用
S N ? U N ? I N ? 1000 kV ? A

若用户:co s ? ? 1 则电源可发出的有功功率为:
P ? U
N

I N cos ? ? 1000kW

无需提供的无功功率。
co 若用户: s ? ? 0.6 则电源可发出的有功功率为:

P ? U

N

I N cos ? ? 600kW
N N

而需提供的无功功率为: Q ? U I sin ? ? 800kvar 所以 提高 cos ? 可使发电设备的容量得以充分利用
总目录 章目录 返回 上一页 下一页

电工技术

(2)增加线路和发电机绕组的功率损耗 设输电线和发电机绕组的电阻为 r :
要求: P ? U I cos ? (P、U定值)时
I ? P U cos ?

?P ? I
I

2

r

(费电) (导线截面积)

S

所以提高 cos ? 可减小线路和发电机绕组的损耗。 2. 功率因数cos ?低的原因 日常生活中多为感性负载---如电动机、日光灯, 其等效电路及相量关系如下图。
总目录 章目录 返回 上一页 下一页

L

?L

?

电工技术

cos ?

I

? I

+
R



40W220V白炽灯 cos ? ? 1
P ? U I cos ?

? UR ? UL

+ +

? U

-

X

L

I ?

P U

?

40 220

A ? 0.182 A

-

感性等效电路
? UL
? U

40W220V日光灯 cos ? ? 0.5
I ? P U co s ? ? 40 220 ? 0.5

A ? 0.364 A

?
相量图
? UR

供电局一般要求用户的 cos ? ? 0.85 否则受处罚。

? I

总目录 章目录 返回

上一页 下一页

常用电路的功率因数
纯电阻电路 纯电感电路或 纯电容电路
cos ? ? 1 cos ? ? 0

电工技术

( ? ? 0)
(? ? ? 90 ? )

R-L-C串联电路
电动机 空载 电动机 满载 日光灯 (R-L串联电路)

1 ? co s ? ? 0 ( ? 90 ? ? ? ? ? 90 ? ) cos ? ? 0.2 ~ 0.3 cos ? ? 0.7 ~ 0.9 cos ? ? 0.5 ~ 0.6
总目录 章目录 返回 上一页 下一页

3.功率因数的提高
(1) 提高功率因数的原则: 必须保证原负载的工作状态不变。即: 加至负载上的电压和负载的有功功率不变。 (2) 提高功率因数的措施:

电工技术

?
? IC

cos ?

在感性负载两端并电容
? I

cos ?
?
? U

I

+
R

? U

L

? I1

C

? IC

?1
? I1

? I

-

总目录 章目录 返回

上一页 下一页

电工技术

结论

并联电容C后:
,电路总功率因数 cos ?
? IC
? U

(1) 电路的总电流 I

电路总视在功率S
(2) 原感性支路的工作状态不变:

感性支路的功率因数 cos ? 1 不变
感性支路的电流
? I 1 不变

(3) 电路总的有功功率不变
因为电路中电阻没有变, 所以消耗的功率也不变。

?1

?

? I

? I1

总目录 章目录 返回

上一页 下一页

电工技术

4. 并联电容值的计算
? I

相量图:
I?C
? I1
C
? IC

+
R

? U

L

IC ? Uω C

?

? U

?1

I?
I?C

由相量图可得:
I C ? I 1 sin ? 1 ? I sin ? I 1 sin ? 1

I sin ?

I?1

即: U ω C ? I 1 sin ? 1 ? I sin ?
总目录 章目录 返回 上一页 下一页

电工技术

U ωC ?

P U cos ? 1
P ωU
2

sin ? 1 ?

P U cos ?

sin ?

C ?

(tan ? 1 ? tan ? )

思考题: 1. 电感性负载采用串联电容的方法是否可提高功率 因数,为什么不采用? 2. 电感性负载采用并联电阻的方法是否可提高功率 因数,这种方法有什么缺点? 3. 原负载所需的无功功率是否有变化,为什么? 4. 电源提供的无功功率是否有变化,为什么?
总目录 章目录 返回 上一页 下一页

电工技术

例1: 一感性负载,其功率P=10kW, cos ? ? 0.6 , 接在电压U=220V , ?=50Hz的电源上。
(1)如将功率因数提高到 cos ? ? 0.95 ,需要 并多大的电容C, 求并C前后的线路的电流。 (2)如将 cos ? 从0.95提高到1,试问还需并多 大的电容C。 解: (1) C ?
P
2

ωU cos ? 1 ? 0.6 即 ? 1 ? 53 ?
10 ? 10
3 2

(tan ? 1 ? tan ? )

co s ? ? 0.95 即 ? ? 18 ?
所以 C ? 314 ? 220 (tan53 ? ? tan18 ? ) F ? 656 μ F
总目录 章目录 返回 上一页 下一页

电工技术

求并C前后的线路电流
并C前: I 1 ?
P U co s ? 1 ? 10 ? 10
3

220 ? 0.6

A ? 75.6 A

并C后: I ?

P U cos ?

?

10 ? 10

3

220 ? 0.95

A ? 47.8 A

(2) cos ? 从0.95提高到1时所需增加的电容值
C ? 10 ? 10
3 2

314 ? 220

(tan18 ? ? tan0 ? )F ? 213.6

μF

可见 : cos ??1时再继续提高,则所需电容值很大 (不经济),所以一般不必提高到1。
总目录 章目录 返回 上一页 下一页

例2:

电工技术

已知电源UN=220V , ?=50Hz,SN=10kV?A向 PN=6kW,UN=220V, ? N ? 0.5 的感性负载供电, cos
(1) 该电源供出的电流是否超过其额定电流? (2) 如并联电容将 cos ? 提高到0.9,电源是否还有 富裕的容量? 解:(1)电源提供的电流为:
I ? P U cos ?
SN UN

?

6 ? 10

3

220 ? 0.5
3

A ? 54.54A

电源的额定电流为:
IN ? ? 10 ? 10 220
总目录 章目录 返回 上一页 下一页

A ? 45.45A

电工技术

所以 I ? I N

该电源供出的电流超过其额定电流。 (2)如将 cos ? 提高到0.9后,电源提供的电流为:
I ? P U cos ? ? 6 ? 10
3

220 ? 0.9

A ? 30.3A

所以 I ? I N

该电源还有富裕的容量。即还有能力再带负载; 所以提高电网功率因数后,将提高电源的利用率。

总目录 章目录 返回

上一页 下一页


赞助商链接
更多相关文档:

《电工技术》正弦交流电路练习试卷

4) ,只有 是属电容性电路( ) A、 R=4Ω,XL=2Ω,XC=1Ω B、R=4Ω,...电工技术第章 正弦交流... 68页 免费 喜欢此文档的还喜欢 第...

电工学考试答案

()。(4 分) 正弦交流电路中, 电感元件或电容元件的瞬时功率的平均值称为该...电工学第七版电子技术下... 35页 1下载券 《电工学2-1》期末考试试... ...

2010年《电工学》试卷A卷_参考答案)

五 六 七 八 九 总分 一.选择题(每题 1 ...1 A. 串联谐振 B.并联谐振 5、在正弦交流电路中...电工学少学时第三版唐介... 3页 2下载券喜欢...

2010年《电工学》习题(上)解答

电工学》习题(上)解答 第 1 章 电路定律及分析方法习题解答一、单项选择题...+ U0 S - ' R0 B A 4 第 3 章 正弦交流电路习题解答一、单项选择题 1...

电工学试题库

电工学试题库_从业资格考试_资格考试/认证_教育专区。正弦交流电路 习题参考答案 一、填空题: 1. 表征正弦交流电振荡幅度的量是它的最大值;表征正弦交流电随时间...

技校电工学第五版第三章 单相交流电路

技校电工学第版第三章 单相交流电路 - 第三章单相交流电路 §3-1 交流电的基本概念 一、填空题(将正确答案填写在横线上) 1.正弦交流电流是指电流的大小和...

电工学考试试卷

电工学考试试卷_从业资格考试_资格考试/认证_教育专区...同步转速为 4、电感元件特性方程的相量形式是 相量...6、正弦交流电的三要素是 7、通常说电路负载过大...

电工技术习题-判断题

电工技术习题-判断题_工学_高等教育_教育专区。电工技术习题-判断(...(错) 11. 串接在正弦交流电路中的功率表,测量的是交流电路的有功功率。 (...

4.《电工技术基础》复习题-正弦交流电路(1)

电工技术基础》复习题 单相正弦交流电路 1、在图示 R,L,C 并联正弦交流电路中,各支路电流有效值 I1=I2=I3=20A,当电 压频率减少一倍而保持其有效值不变 ...

电工学考试题目及参考答案

电工学考试题目及参考答案_工学_高等教育_教育专区。...电源端电压增大,电源电流增大 4. 关于电流的说法中...8. 正弦交流电路如下, 已知Uab=141.4 伏, 试求...

更多相关标签:
网站地图

文档资料共享网 nexoncn.com copyright ©right 2010-2020。
文档资料共享网内容来自网络,如有侵犯请联系客服。email:zhit325@126.com