当前位置:首页 >> 高中教育 >> 1.4.3 含有一个量词的命题的否定

1.4.3 含有一个量词的命题的否定


高二数学 选修2-1

1.4 含有一个量词的命题的否定

1、什么叫做全称量词,全称命题?
短语“所有的”“任意一个” 在逻辑中通常叫做全 称量词.用符号“ ”表示。 ? 含有全称量词的命题,叫做全称命题

简记为:?x ? M,p(x)
2、什么叫做存在量词,特称命题?
短语“存在一个

”“至少一个” 在逻辑中通常叫做存 在量词.用符号“ ”表示。 ? 含有存在量词的命题,叫做特称命题。 还有哪些量词是全 称量词或存在量词?

简记为:?x ? M,p(x)

常见的全称量词有“所有的”“任意一个” “一切” “每一个” “任给”“所有的”等.
常见的存在量词有“存在一个”“至少一个” “有些” “有一个” “对某个” “有的”等. 3、判断全称命题和特称命题真假
要判定全称命题“?x∈M, p(x) ”是真命题,需要对集合M中 每个元素x, 证明p(x)成立;如果在集合M中找到一个元素x0,使 得p(x0)不成立,那么这个全称命题就是假命题 要判定特称命题 “ ? x0∈M, p(x0)”是真命题,只需在集 合M中找到一个元素x0,使p(x0)成立即可,如果在集合M中, 使p(x)成立的元素x不存在,则特称命题是假命题

写出下列命题的否定 1)所有的矩形都是平行四边形; x ? M,p(x) ?

2)每一个素数都是奇数; 2 3)?x ? R, x ? 2 x ? 1 ? 0 否定:
2)存在一个素数不是奇数;

?x ? M,p(x) ?x ? M,p(x)

1)存在一个矩形不是平行四边形;?x ? M,?p(x)

3)?x ? R, x 2 ? 2 x ? 1 ? 0

?x ? M,?p(x) ?x ? M,?p(x)

这些命题和它们的否定在形式上有什么变化?

从形式看,全称命题的否定是特称命题

含有一个量词的全称命题的否定, 有下面的结论:

全称命题

p : ?x ? M,p(x)
?x0? M,
┐p(x 0)

它的否定 ?p :

例1写出下列全称命题的否定: 1)p:所有能被3整除的整数都是奇数;

2)p:每一个四边形的四个顶点共圆 2 3)p:对任意x ? Z,x 的个位数字不等于3。
? 解:1) p : 存在一个能被3整除的整数不是奇数.
2) ?P : 存在一个四边形的四个顶点不共圆. 3)

?p : ?x0 ? z,

x

2

0

的个位数字等于3 .

写出下列命题的否定 1)有些实数的绝对值是正数;

2)某些平行四边形是菱形;

?x ? M,p(x)
?x ? M,p(x)
?x ? M,?p(x)

?x ? M,p(x)

3)?x ? R, x ? 1 <
2

0

否定: 1)所有实数的绝对值都不是正数;
?x ? M,?p(x) ?x ? M,?p(x)

2)每一个平行四边形都不是菱形;
3)

?x ? R, x 2 ? 1 ? 0

这些命题和它们的否定在形式上有什么变化?

从形式上看,特称命题的否定是全称命题 一般地,对于含有一个量词的特称命题的 否定,有下面的结论
特称命题 p : 它的否定

?x0? M,p(x0)

?p : ? x ? M, ?p(x)

例2 写 出下列特 称命题 的否定: 1)p:?x0 ? R,x02 +2x0 +2 ? 0;
2)p:有的三角形是等边三角形;
3) p: 有一个素数含三个正因数.
解: 1)?p : ?x ? R,x 2 ? 2 x ? 2 >0 2) ?p : 所有三角形都不是等边三角形

? 3) p : 每一个素数都不含三个正因数

纵观近几年的高考试题,我们可以发现《常用逻辑用语》也是必考知 识之一,尤其是充分必要条件的内容几乎年年必考一个选择题,近年来增 加了 “量词”方面的考查,例如2009年就多次考查了这方面的知识,下 面举例说明如下:

1.(2009年天津(理)3)命题“存在

x0 ? R, 2 x0 ? 0

”的否定D (

)

A.不存在x0 ? R, 2 x0 >0

B存在x0 ? R, 2 x0 ? 0 .

C.对任意的x ? R,2 ? 0
x

D对任意的x ? R, 2 x >0 .

2.(2009年辽宁(文)11)下列4个命题:
1 x 1 x p1 : ?x ? 0,+?),( ) ? ? ? ; ( 2 3
p2 : ?x ? ? 0,1? , log 1 x ? log 1 x;
2 3

1 p3 : ?x ? ? 0, ?? ? , ( ) x ? log 1 x; 2 2

1 1 x p4 : ?x ? (0, ), ( ) ? log 1 x. 3 2 3
其中的真命题是( D )

A. p1 , p2,B. p1 , p4,

C. p2 , p3, D. p2 , p4 .

3.(2009年海南(宁夏)卷(理)5)有四个关于三角函数的命题:

p1 : ?x ? R , sin 2 p2

x x 1 ? cos 2 ? 2 2 2 : ?x, y ? R , sin( x ? y ) ? sin x ? sin y

p3 : ?x ? ? 0, ?

?,

1 ? cos 2 x ? sin x 2

p4 : sin x ? cos y ? x ? y ?
其中的假命题是(

?

2

A)
B. p2 , p4

A.p1, p4

C. p1 , p3

D. p2 , p3

一般地,对于含有一个量词的全称命题的否定, 有下面的结论:

p : ?x ? M,p(x) 它的否定 ?p : ?x ? M,?p(x ) 0 0
全称命题

一般地,对于含有一个量词的特称命题的否定,有下 面的结论: 特称命题 p :

?x0? M,p(x0)

它的否定

?p :

? x ? M, ?p(x)

作业:P27 习题1.4 A组 3 《自主学习丛书》P27~P28


更多相关文档:

1.4.3 含有一个量词的命题的否定

1.4.3 . 含有一个量词的命题的否定 整体设计 教材分析 本节内容重在让学生通过数学中的一些实例, 探究并归纳出含有一个量词的命题与它们 的否定在形式上的变化...

1.4.3含有一个量词的命题的否定

1.4.3 含有一个量词的命题的否定 教学目标重 点:通过探究,了解含有一个量词的命题与它们的否定在形式上的变化规律,会正确地对含有一个 量词的命题进行否定; ...

1.4.3含有一个量词的命题的否定

1.4.3含有一个量词的命题的否定_高二数学_数学_高中教育_教育专区。1.4.3 含有一个量词的命题的否定学习目标: 1、能用自然语言和符号语言写出含有一个量词的命题...

1.4.3含有一个量词的命题的否定

1.4.3含有一个量词的命题的否定_数学_高中教育_教育专区。编写:李 涛 审核:何全生 复核:冯玉德 年级组长:王长青 班级: 姓名: 周次:第 8 周 年 月 日 ...

1.4.3含有一个量词的命题的否定

1.4.3 含有一个量词的命题的否定 (一)教学目标 1.知识与技能目标 (1)通过探究数学中一些实例,使学生归纳总结出含有一个量词的命题与它们的否定在形 式上的...

1.4.3 含有一个量词的命题的否定

1.4.3 含有一个量词的命题的否定_高二数学_数学_高中教育_教育专区。1.4.3 一、基础达标 含有一个量词的命题的否定 1.下列命题中,正确的全称命题是( ) A.对...

§1.4.3含一个量词的命题的否定

§1.4.3含一个量词的命题的否定_数学_高中教育_教育专区。§ 1.4.3 含一个量词的命题的否定 编写人:刘励钧 校对人:聂格娇 审核人:徐立朝 学习目标 1. 掌握...

1.4.3 含有一个量词的命题的否定

1.4.3 含有一个量词的命题的否定_数学_高中教育_教育专区。一套完整的学案 成都市三原外国语学校践学案 年级 高二 学科 谭金国 数学 课题 1. 4.3 含有一个...

1.4.3含有一个量词的命题的否定

1.4.3含有一个量词的命题的否定_数学_高中教育_教育专区。1.4.3 含有一个量词的命题的否定知识目标 1.进一步理解全称命题和特称命题的意义。 2.能正确的对含有...
更多相关标签:
含有量词的命题的否定 | 含有两个量词的否定 | 全称量词的否定 | 量词的否定 | 命题与量词 | 全称量词的否命题 | 1.1命题与量词 | 命题与量词教案 |
网站地图

文档资料共享网 nexoncn.com copyright ©right 2010-2020。
文档资料共享网内容来自网络,如有侵犯请联系客服。email:zhit325@126.com