# 2014年美国大学生数学建模竞赛题目及翻译

PROBLEM A: The Keep-Right-Except-To-Pass Rule In countries where driving automobiles on the right is the rule (that is, USA, China and most other countries except for Great Britain, Australia, and some former British colonies), multi-lane freeways often employa rule that requires drivers to drive in the right-most lane unless they are passing another vehicle, in which case they move one lane to the left, pass, and return to their former travel lane. Build and analyze a mathematical model to analyze the performance of this rule in light and heavy traffic. You may wish to examine tradeoffs between traffic flow and safety, the role of under- or over-posted speed limits (that is, speed limits that are too low or too high), and/or other factors that may not be explicitly called out in this problem statement. Is this rule effective in promoting better traffic flow? If not, suggest and analyze alternatives (to include possibly no rule of this kind at all) that might promote greater traffic flow, safety, and/or other factors that you deem important. In countries where driving automobiles on the left is the norm, argue whether or not your solution can be carried over with a simple change of orientation, or would additional requirements be needed. Lastly, the rule as stated above relies upon human judgment for compliance. If vehicle transportation on the same roadway was fully under the control of an intelligent system – either part of the road network or imbedded in the design of all vehicles using the roadway – to what extent would this change the results of your earlier analysis?

PROBLEM B: College Coaching Legends Sports Illustrated, a magazine for sports enthusiasts, is looking for the “best all time college coach” male or female for the previous century. Build a mathematical model to choose thebest college coach or coaches (past or present) from among either male or female coaches in such sports as college hockey or field hockey, football, baseball or softball, basketball, or soccer. Does it make a difference which time line horizon that you use in your analysis, i.e., does coaching in 1913 differ from coaching in 2013? Clearly articulate your metrics for assessment. Discuss how your model can be applied in general across both genders and all possible sports. Present your model’s top 5 coaches in each of 3 different sports.

In addition to the MCM format and requirements, prepare a 1-2 page article for Sports Illustrated that explains your results and includes a non-technical explanation of your mathematical model thatsports fanswill understand. 问题 B：大学传奇教练 体育画报是一个为运动爱好者服务的杂志，正在寻找在整个上个世纪的“史上最好的大学教练”。建立数学 模型选择大学中在一下体育项目中最好的教练：曲棍球或场地曲棍球，足球，棒球或垒球，篮球，足球。 时间轴在你的分析中是否会有影响？比如 1913 年的教练和 2013 年的教练是否会有所不同？清晰的对你的 指标进行评估，讨论一下你的模型应用在跨越性别和所有可能对的体育项目中的效果。展示你的模型中的 在三种不同体育项目中的前五名教练。 除了传统的 MCM 格式，准备一个 1 到 2 页的文章给体育画报，解释你的结果和包括一个体育迷都明白的 数学模型的非技术性解释。

### 2013美国大学生数学建模竞赛题目和翻译和A题图解

2013美国大学生数学建模竞赛题目翻译和A题图解_其它_高等教育_教育专区。2013...国家:美国,中国,俄罗斯,埃及,或者沙特阿拉伯。 文档贡献者 happyy605 贡献于2014...

### 2013年美国大学生数学建模竞赛题目翻译

2013年美国大学生数学建模竞赛题目翻译_理学_高等教育_教育专区。2013年美国大学生数学建模竞赛题目翻译A 极致的布朗尼盘子 当在矩形盘子烘焙时,热量集中在 4 个角,...

### 2016年美国大学生数学建模竞赛A题翻译

2016年美国大学生数学建模竞赛A题翻译_英语考试_外语学习_教育专区。2016年美国...2012美国大学生数学建模... 23页 免费 2014年美国大学生数学建... 2页 2...

### 2016美国数模竞赛题目中文翻译

2016美国数模竞赛题目中文翻译_英语学习_外语学习_教育专区。A: 一个人充满热水的浴缸从一个单一的水龙头, 并落户到浴缸里清洁和放松。 不幸的是, 浴缸不是温泉...

### 2008-2015美美国大学生数学建模MCM题目整理

2014 年美国大学生数学建模竞赛 MCM、ICM 试题 2014 MCM A: The Keep-Right-Except-To-Pass Rule In countries where driving automobiles on the right is the...

### 2012年美国大学生数学建模竞赛B题特等奖文章翻译

2012 年美赛 B 题 题目翻译:到 Big Long River(225 英里)游玩的游客可以享受那里的风景和振奋人心的急 流。远足者没法到达这条河,唯一去的办法是漂流过去。这...