当前位置:首页 >> 数学 >> 【创新设计】2016-2017高中数学浙江专用人教版必修一练习:2.2.1 第2课时对数的运算.doc

【创新设计】2016-2017高中数学浙江专用人教版必修一练习:2.2.1 第2课时对数的运算.doc


基 础 过 关
1.log242+log243+log244 等于( A.1 解析 B.2 ) C.24 1 D. 2

log242+log243+log244=log24(2× 3× 4)=log2424=1.

答案 A 2.计算 log916·log881 的值为( A.18 解析 1 B. 18 ) 8 C. 3 3 D. 8

lg 24 lg 34 4lg 2 4lg 3 8 log916·log881= · = · = . lg 32 lg 23 2lg 3 3lg 2 3

答案 C y ?2 3.若 lg x=a,lg y=b,则 lg x-lg? ?10? 的值为( 1 A. a-2b-2 2 1 C. a-2b-1 2 )

1 B. a-2b+1 2 1 D. a-2b+2 2

1 y 1 解析 原式= lg x-2lg = lg x-2(lg y-1) 2 10 2 1 1 = a-2(b-1)= a-2b+2. 2 2 答案 D 3 x?3 ?y? =________. 4.若 lg x-lg y=a,则 lg? - lg ?2? ?2? 3 x?3 ?y? =3?lgx-lgy? 解析 lg? - lg 2? ?2? ?2? ? 2 =3[(lg x-lg 2)-(lg y-lg 2)] =3(lg x-lg y)=3a. 答案 3a 1 5.已知 m>0,且 10x=lg(10m)+lg ,则 x=________. m 1? 1 x 解析 因为 lg(10m)+lg =lg? m?=lg 10=1,所以 10 =1,得 x=0. ?10m· m 答案 0 1 5 6.计算:(1)lg -lg +lg 12.5-log89·log34; 2 8

(2)42(log29 解

1

-log25)

.

1 5 (1)lg -lg +lg 12.5-log89·log34 2 8

1 8 4 1 ? 2lg 3 2lg 2 =lg? ?2×5×12.5?-3lg 2· lg 3 =1-3=-3.

? (2)原式=? ?42?

1

(log29-log25) 9 9 =2log2 = . 5 5

7.已知 a2=m,a3=n(a>0 且 a≠1).求 2logam+logan 的值. 解 因为 a2=m,a3=n(a>0 且 a≠1),所以 logam=2,logan=3. ∴2logam+logan=2× 2+3=7. 8.计算:(1)lg 25+lg 2·lg 50+lg22; (2) 解 lg23-lg 9+1(lg 27+lg 8-lg 1 000) . lg 0.3·lg 1.2 (1)原式=2lg 5+lg 2·(1+lg 5)+lg22=2lg 5+lg 2·(1+lg 5+lg 2)=2lg 5+2lg 2=2. 3 3? lg23-2lg 3+1? ?2lg 3+3lg 2-2? (lg 3-1)· (lg 3+2lg 2-1)

(2)原式=

3 (1-lg 3)· (lg 3+2lg 2-1) 2 = (lg 3-1)· (lg 3+2lg 2-1) 3 =- . 2 能 力 提 升 7 9.对数式 lg 14-2lg +lg 7-lg 18 的化简结果为( 3 A.1 B.2 C.0 ) D.3

7?2 14×7 7 解析 lg 14-2lg +lg 7-lg 18=lg 14-lg? =lg 1=0. ?3? +lg 7-lg 18=lg 7 2 3 ? ? ×18 ?3? 答案 C 8 10.已知 2x=3,log4 =y,则 x+2y 等于( 3 A.3 B.8 ) C.4 8 3 D.log48

解析 由 2x=3,得 x=log23.∴x+2y=log23+2log4 8 log2 3 8 =log23+2× =log23+log2 log24 3

8? =log2? ?3×3?=log28=3. 答案 A 11.如果方程(lg x)2+(lg 2+lg 3)lg x+lg 2·lg 3=0 的两根为 x1,x2,则 x1x2 的值为 __________. 解析 可将原方程看作关于 lg x 的二次方程,则其根为 lg x1,lg x2,由根与系数的关系, 1 1 知 lg(x1x2)=lg x1+lg x2=-(lg 2+lg 3)=-lg 6=lg ,所以 x1x2= . 6 6 答案 1 6

2 12.地震的震级 R 与地震释放的能量 E 的关系为 R= (lg E-11.4).A 地地震级别为 9.0 级, 3 B 地地震级别为 8.0 级,那么 A 地地震的能量是 B 地地震能量的______倍. 2 3 解析 由 R= (lg E-11.4),得 R+11.4=lg E, 3 2 故 E=102R
3 3
+11.4

.设 A 地和 B 地地震能量分别为 E1,E2,

102 9 11.4 3 E1 则 = 3 =102=10 10. E2 10 ×8+11.4
× +

2

即 A 地地震的能量是 B 地地震能量的 10 10倍. 答案 10 10 13.一台机器原价 20 万元,由于磨损,该机器每年比上一年的价格降低 8.75%,问经过多 少年这台机器的价值为 8 万元?(lg 2≈0.301 0,lg 9.125≈0.960 2) 解 设经过 x 年,这台机器的价值为 8 万元,则 8=20(1-0.087 5)x,

即 0.912 5x=0.4,两边取以 10 为底的对数, lg 4-1 2lg 2-1 lg 0.4 得 x= = = ≈10(年), lg 0.912 5 lg 9.125-1 lg 9.125-1 所以约经过 10 年这台机器的价值为 8 万元. 探 究 创 新 1 1 14.甲、乙两人解关于 x 的方程:log2x+b+clogx2=0,甲写错了常数 b,得两根 , ;乙 4 8 1 写错了常数 c,得两根 ,64.求这个方程的真正根. 2 解 原方程变形为(log2x)2+blog2x+c=0①

1 1 由于甲写错了常数 b,得到的根为 和 . 4 8 1 1 所以 c=log2 ·log2 =6. 4 8 1 由于乙写错了常数 c,得到的根为 和 64. 2 1 2 ? 所以 b=-? ?log22+log264?=-5.故方程①为(log2x) -5log2x+6=0, 解得 log2x=2 或 log2x=3,即 x=22 或 x=23, 所以,这个方程的真正根为 x=4 或 x=8.


更多相关文档:

...2.1.2 第2课时指数函数及其性质的应用.doc

【创新设计】2016-2017高中数学浙江专用人教版必修一练习:2.1.2 第2课时指数函数及其性质的应用.doc_数学_高中教育_教育专区。基础过关 1?-1 1.若 a=20.7,...

...人教版必修一练习:2.2.1 第1课时对 数.doc

【创新设计】2016-2017高中数学浙江专用人教版必修一练习:2.2.1 第1课时对 ...3 答案 4 3 6.将下列指数式与对数式互化. 1?-2 (1)52=25;(2)? ?3...

...高中数学浙江专用人教版必修一练习:1.1.3 第2课时补...

【创新设计】2016-2017高中数学浙江专用人教版必修一练习:1.1.3 第2课时补集及集合运算的综合应用.doc_数学_高中教育_教育专区。基础过关 1.已知 M={x|x>2}...

...高中数学浙江专用人教版必修一练习:1.2.2 第1课时函...

【创新设计】2016-2017高中数学浙江专用人教版必修一练习:1.2.2 第1课时函数的表示法.doc_数学_高中教育_教育专区。基础过关 1.若二次函数的图象开口向上且关于...

...高中数学浙江专用人教版必修一练习:2.1.2 第1课时指...

【创新设计】2016-2017高中数学浙江专用人教版必修一练习:2.1.2 第1课时指数函数的图象及性质.doc_数学_高中教育_教育专区。基础过关 1.函数 y=2x +1 的图象...

...人教版必修一练习:2.1.1 第1课时根 式.doc

【创新设计】2016-2017高中数学浙江专用人教版必修一练习:2.1.1 第1课时根 式.doc_数学_高中教育_教育专区。基础过关 4 1 1.若 a< ,则化简 (2a-1)2的...

...高中数学浙江专用人教版必修一练习:1.3.1 第2课时函...

【创新设计】2016-2017高中数学浙江专用人教版必修一练习:1.3.1 第2课时函数的最大(小)值.doc_数学_高中教育_教育专区。基础过关 1.函数 y= A.2 1 在...

...高中数学浙江专用人教版必修一练习:1.1.1 第2课时集...

【创新设计】2016-2017高中数学浙江专用人教版必修一练习:1.1.1 第2课时集合的表示.doc_数学_高中教育_教育专区。基础过关 ?x+y=2, ? 1.方程组? 的解集...

...2017高中数学浙江专用人教版必修一练习:1.2.1函数的...

【创新设计】2016-2017高中数学浙江专用人教版必修一练习:1.2.1函数的概念.doc_数学_高中教育_教育专区。基础过关 1.下列各图中,可表示函数 y=f(x)图象的只...

...浙江专用人教版必修一练习:2.1 习题课.doc

【创新设计】2016-2017高中数学浙江专用人教版必修一练习:2.1 习题课.doc_数学_高中教育_教育专区。习题课 指数函数及其基本性质 基础过关 1.已知 xy≠0 且 4x...
更多相关标签:
网站地图

文档资料共享网 nexoncn.com copyright ©right 2010-2020。
文档资料共享网内容来自网络,如有侵犯请联系客服。email:zhit325@126.com