当前位置:首页 >> 数学 >> .2椭圆 2.2.1椭圆及其标准方程第一课时

.2椭圆 2.2.1椭圆及其标准方程第一课时


2.2 椭圆 2.2.1 椭圆及其标准方程

整体设计 教材分析 本节内容是继学生学习了直线和圆的方程, 对曲线的方程的概念有了一定了解, 对用坐 标法研究几何问题有了初步认识的基础上, 进一步学习用坐标法研究曲线. 椭圆的学习可以 为后面研究双曲线、抛物线提供基本模式和理论基础. 因此这节课有承前启后的作用,是本 章和本节的重点内容之一. 因此这一节的教学既

可以对前面所学知识情况进行检查, 又为以 后进一步学习其他两种圆锥曲线打好基础,所以学好本节课内容具有承上启下的重要意 义.我们在教学中采用实验探索法,讲授发现法等教学法,具体做法如下: (1)通过图形由圆变化到椭圆的过程中蕴含着运动变化的思想,由学生通过观察、猜想, 从而使学生参与知识的获取、抽象、归纳的全过程,得到椭圆的定义及其应注意的条件,提 高学生的综合分析能力. (2) 由演示出发,经过问题思考→研究讨论→点拨引导→抽象概括,得到椭圆标准方 程.教师边演示边提出问题,充分调动学生学习的自主性和积极性,并从中体会数学知识的 和谐美和获取知识的喜悦. 一位教育学家说过: “不能只向学生奉献真理, 而应教给学生发现和探求真理的方法. ” 本节课的教学,正是本着这样的教学思想去设计的. 课时分配 本节内容分两课时完成. 第一课时讲解椭圆的定义及其标准方程;第二课时讲解运用椭 圆的定义及其标准方程解题,巩固求曲线方程的两种基本方法,即待定系数法、定义法. 第 1 课时 教学设计(一) 整体设计 教学目标 知识与技能 掌握椭圆的定义及其标准方程;能正确推导椭圆的标准方程;明确焦点、焦距的概念. 过程与方法 培养学生的动手能力和合作学习能力;渗透类比推理、分类讨论和数形结合思想. 情感、态度与价值观 激发学生学习数学的兴趣、 提高学生的审美情趣、 培养学生勇于探索, 敢于创新的精神. 重点难点 教学重点:椭圆的定义和椭圆的标准方程. 教学难点:椭圆标准方程的推导. 教具准备 多媒体课件和自制教具:绘图板、图钉、细绳. 教学过程 引入新课
北京天梯志鸿教育科技有限责任公司

1.通过演示课前老师和学生共同准备的有关椭圆的实物和图片(PPT),让学生从感性上 认识椭圆. 2.通过动画设计(几何画板演示),展示椭圆的形成过程,使学生认识到椭圆是点按一 定“规律”运动的轨迹. 探究新知 探究: 取一条定长的细绳, 把它的两端都固定在图板的同一点处, 套上铅笔, 拉紧绳子, 移动笔尖,这时笔尖(动点)画出的轨迹是一个圆.如果把细绳的两端拉开一段距离,分别固 定在图板的两点处(如图),套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?

下面请同学们在绘图板上作图,并思考以下问题: 在作图时,因为笔尖 M 运动,所以为动点,两个图钉 F1、F2 不动,所以为定点. 1. 在这一过程中, 你能说出移动的笔尖(动点)满足的几何条件吗?其轨迹是什么曲线? 2.改变两图钉之间的距离,使其与绳长相等,画出的图形还是椭圆吗? 3.当绳长小于两图钉之间的距离时,还能画出图形吗? 4.两个图钉重合在一点时,画出的图形是什么? 5. 当绳长满足什么条件时,动点 M 形成的轨迹是椭圆? 活动设计:两个学生一组,合作操作画图过程,并思考上述问题,必要时,允许合作、 讨论、交流.教师巡视指导,及时发现问题,解决问题. 活动成果:1.|MF1|+|MF2|=绳长(定值);椭圆;2.不是椭圆,是线段 F1F2;3.不能;4. 以 F1(F2)为圆心,以绳长的一半为半径的圆;5.当两图钉 F1、F2 之间的距离不为 0 且绳长大 于两图钉 F1、F2 之间的距离时. 提出问题:类比平面几何中圆的定义,给出椭圆的定义. 活动设计:学生先独立思考,必要时允许学生自愿合作、讨论、交流. 学情预测:开始学生的回答可能不全面、不准确,但在学生的不断补充、纠正下,会趋 于完善. 活动成果:师生共同概括出椭圆定义: 平面内与两个定点 F1 、 F2 的距离的和等于常数(大于 |F1 F2 | )的点的轨迹叫做椭圆, 这 两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距. (在归纳定义时强调定义要满足三个条件:在平面内、任意一点到两个定点的距离之和 等于常数、常数大于|F1F2|) 设计意图:通过上述操作、思考问题使学生建立起对椭圆的初步、直观的认识,并训练 和培养学生的抽象概括能力. 下面我们根据椭圆的几何特征,选择适当的坐标系,建立椭圆方程.为今后通过方程研
北京天梯志鸿教育科技有限责任公司

究椭圆的性质做好准备. 提出问题:利用坐标法求曲线方程的一般方法和步骤是什么? 活动结果:建系、设点、列式、化简.(学生回答,教师板书) 提出问题:如图,已知椭圆的两焦点为 F1,F2,且|F1F2|=2c,对椭圆上任一点 M,有 |MF1|+|MF2|=2a,尝试建立椭圆的方程.

提出问题:如何建立坐标系,使求出的方程更为简单? 活动设计:学生先独立思考,必要时,允许合作讨论.教师巡视指导. 学情预测:学生的建系方法应当会有很多种. 活动结果:教师将各个学生或学习小组的建立坐标系的方案一一画图表示.然后,提醒 全班学生应当类比利用圆的对称性建立圆的标准方程时的建立坐标系的方法, 根据椭圆的几 何特征(主要是对称性),选择适当的坐标系,才可能使建立的椭圆方程简单.这样,师生就 会达成一致意见,选定以下两种方案: 方案一:如图,以经过椭圆两焦点 F1,F2 的直线为 x 轴,线段 F1F2 的垂直平分线为 y 轴,建立直角坐标系 xOy. 方案二:如图,以经过椭圆两焦点 F1,F2 的直线为 y 轴,线段 F1F2 的垂直平分线为 x 轴,建立直角坐标系 xOy. 方案一 方案二

提出问题:请同学们按方案一具体求出椭圆的方程. 活动设计:学生独立解决.必要时,为顺利完成教学,教师应当介入,加以指导、提示. 设点:设椭圆上任一点 M 的坐标为(x,y), 列式:|MF1|+|MF2|=2a,∴ ?x+c?2+y2+ ?x-c?2+y2=2a.① 化简:(这里,教师为突破难点,进行设问:我们怎样化简带根式的式子?对于本式是 直接平方好还是整理后再平方好呢?) ?x+c?2+y2=2a- ?x-c?2+y2, 两边平方,得(x+c)2+y2=4a2-4a ?x-c?2+y2+(x-c)2+y2, 即 a2-cx=a ?x-c?2+y2, 两边平方,得 a4-2a2cx+c2x2=a2(x-c)2+a2y2, 整理,得(a2-c2)x2+a2y2=a2(a2-c2).(※) 学情预测:一般情况下,得到方程(※)即告结束. 提出问题:设方案一中的椭圆与 x 轴的交点分别为 A1,A2,与 y 轴的交点分别为 B1, B2,同学们都知道 a,c 的含义,你能从图形中找到长度分别等于 a,c 的线段吗?

活动设计:学生先独立思考,必要时,可以重复开始的画椭圆的过程,并可合作交流.
北京天梯志鸿教育科技有限责任公司

|F1F2| |A1A2| 学情预测:估计得出 c= =|OF1|=|OF2|,a= =|OA1|=|OA2|应当不会有问题. 2 2 提出问题:当动点 M 移动到 B1 或 B2 点时,根据椭圆的定义及坐标系的建立方式,你 还能发现新的结论吗? 学情预测:学生会发现:|B2F1|=|B2F2|=a=|B1F1|=|B1F2|. 教师:这样,因为△B2OF2 为直角三角形,且|B2F2|=a,|OF2|=c,所以,a2-c2=|OB2|2. 因此,方程(※)中的 a2-c2 有明显的几何意义.为此,令|OB2|=b,则 a2-c2=b2.于是,方 程(※)可以进一步化简为: b2x2+a2y2=a2b2.(☆) 学情预测:一般情况下,得到方程(☆),本题求解也即告结束. 提出问题:非常好.这个方程两边次数一致,非常工整,类似这种结构的方程在哪儿见 过,怎么处理的呢? 活动设计:学生可以互相讨论、启发,必要时教师可以提示. x y 活动结果:直线的截距式方程 + =1 就是由 bx+ay=ab 化得的.因此, a b x2 y2 方程(☆)可以进一步整理成: 2 + 2=1(a>b>0)(这种形式“美”). a b x2 y2 指出:方程 2+ 2=1(a>b>0)叫做椭圆的标准方程,焦点在 x 轴上,焦点是 F1(-c,0), a b F2(c,0),且 c2=a2-b2. 提出问题:如果以 F1,F2 所在直线为 y 轴,线段 F1F2 的垂直平分线为 x 轴,建立直角 坐标系,焦点是 F1(0,-c),F2(0,c),椭圆的方程又如何呢? 教师:列式:|MF1|+|MF2|=2a,即 x2+?y+c?2+ x2+?y-c?2=2a.② 试比较①②两式, 它们有何区别与联系?发现只需交换①式中 x 和 y 的位置, 即得②式, x2 y2 反之也成立.所以,易知,只需将 2+ 2=1(a>b>0)中的 x 和 y 的位置互换,即得焦点在 y a b y2 x2 轴上的椭圆方程为 2 + 2=1(a>b>0). a b x2 y2 y2 x2 教师指出:我们所得的两个方程 2 + 2=1 和 2 + 2=1(a>b>0)都是椭圆的标准方程. a b a b 提出问题:已知椭圆的标准方程,如何判断焦点位置? 活动设计:学生先独立思考,当然,学生自愿合作讨论也允许. 活动结果:看 x2,y2 的分母大小,哪个分母大就在哪一条轴上. 理解新知 1.观察椭圆图形及其标准方程,师生共同总结归纳: (1)椭圆标准方程对应的椭圆中心在原点,以焦点所在轴为坐标轴; (2)椭圆标准方程形式:左边是两个分式的平方和,右边是 1; (3)椭圆标准方程中三个参数 a,b,c 满足关系式:b2=a2-c2(a>b>0); (4)椭圆焦点的位置由标准方程中分母的大小确定; (5)求椭圆标准方程时,可运用待定系数法求出 a,b 的值. 2.在归纳总结的基础上填写下表 标准方程 x2 y2 + =1(a>b>0) a2 b2 y2 x2 + =1(a>b>0) a 2 b2

北京天梯志鸿教育科技有限责任公司

图形

a,b,c 关系 焦点坐标 焦点位置

b2=a2-c2 (± c,0) 在 x 轴上

b2=a2-c2 (0,± c) 在 y 轴上

运用新知 1 已知一个贮油罐横截面的外轮廓是一个椭圆,它的焦距为 2.4 m,外轮廓线上的点到 两个焦点的距离的和为 3 m,求这个椭圆的标准方程. 思路分析:巩固椭圆的标准方程,通过学生熟悉的实际模型,体会圆锥曲线应用的广泛 性.解题思路是寻找两个定值 a,c.用待定系数法求出椭圆的标准方程.

解:以两焦点 F1、F2 所在直线为 x 轴,线段 F1F2 的垂直平分线为 y 轴,建立如图所示 的直角坐标系 xOy,则这个椭圆的标准方程可设为 x2 y2 + =1(a>b>0). a2 b2 根据题意知 2a=3,2c=2.4,即 a=1.5,c=1.2,所以 b2=a2-c2=1.52-1.22=0.81, 因此,这个椭圆的标准方程为 x2 y2 + =1. 2.25 0.81 点评:(1)进一步熟悉椭圆的焦点位置与标准方程之间的关系;(2)掌握运用待定系数法 求椭圆的标准方程,解题时强调“二定”即定位定量; (3)培养学生运用知识解决问题的能 力. 2 求满足下列条件的椭圆的标准方程: (1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上一点 P 到两焦点的距离和等于 10. 3 5 (2)两焦点坐标分别是(0,-2),(0,2),并且椭圆经过点(- , ).(教材例题改编) 2 2 (3)a+b=10,c=2 5. 思路分析: (1)根据题设容易知道 c=4,2a=10 且椭圆焦点在 x 轴上; 3 5 (2)思路 1:利用椭圆定义(椭圆上的点(- , )到两个焦点(0,-2)、(0,2)的距离之和为 2 2 常数 2a)求出 a 值,再结合已知条件和 a、b、c 间的关系求出 b2 的值,进而写出标准方程; y2 x2 思路 2:先根据已知条件设出焦点在 y 轴上的椭圆的标准方程 2 + 2=1(a>b>0),再将 a b 3 5 椭圆上点的坐标(- , )代入此方程,并结合 a、b、c 间的关系求出 a2、b2 的值,从而得到 2 2
北京天梯志鸿教育科技有限责任公司

y2 x2 椭圆的标准方程为 + =1. 10 6
?a+b=10, ? (3)利用已知条件得 a2-b2=20,联立? 2 2 ? ?a -b =20,

解得 a,b.

然后根据焦点位置分别写出焦点在 x 轴和 y 轴上的椭圆方程. x2 y2 答案:(1) + =1 25 9 y2 x2 (2) + =1 10 6 x2 y2 y2 x2 (3) + =1 或 + =1. 36 16 36 16

点评: 加深学生对椭圆的焦点位置与标准方程之间关系的理解, 加深对定义的理解和对 分类讨论数学思想方法的运用.教学时采用在教师引导下学生自主完成的方法. 变练演编 提出问题:请解答下列问题: x2 y2 1.已知椭圆 + =1,则你可以得到哪些结论?(把你能得到的结论都写出来) 25 16 2.已知 a=5,c=4,则你可以得到哪些结论?(把你能得到的结论都写出来) x2 y2 3.已知 a=4,______,可以求得椭圆的标准方程为 + =1,则题中横线上需要添加 9 16 什么样的条件? 活动设计:学生先独立探索,允许互相交流成果.然后,全班交流. 学情预测:1.a=5,b=4,c=3,两焦点为(-3,0),(3,0). 2.b=3,椭圆的标准方程为 x2 y2 y2 x2 + =1 或 + =1 等. 25 16 25 16

3.b=3,且焦点在 y 轴上;或 c= 7,且焦点在 y 轴上;或一个焦点坐标为(0, 7); 或椭圆上有一点(3,0)(答案很多). 设计意图:设置本组开放性问题,意在增加问题的多样性、有趣性、探索性和挑战性, 训练学生思维的发散性、收敛性、灵活性和深刻性,长期坚持,不仅会加深学生对数学的理 解、掌握,而且会潜移默化地学会编题、解题. 达标检测 x2 y2 1.椭圆 + =1 上一点 P 到焦点 F1 的距离等于 6,则点 P 到另一个焦点 F2 的距离是 64 9 ______. 2.动点 P 到定点 F1(-5,0),F2(5,0)的距离的和是 10,则动点 P 的轨迹为( ) A.椭圆 B.线段 F1F2 C.直线 F1F2 D.不能确定

x2 y2 3. 如图所示, 若 AB 是过椭圆 + =1 的下焦点 F1 的弦, 则△F2AB 的周长是______. 9 25 4.椭圆 4x2+3y2=12 的焦点坐标是______.
北京天梯志鸿教育科技有限责任公司

5.简化方程: x2+?y+3?2+ x2+?y-3?2=10. (学生分组比赛,每组抽 2 位同学的作业用幻灯演示,教师订正.) y2 x2 答案:1.10 2.B 3.20 4.(0,1),(0,-1) 5. + =1 25 16 课堂小结 知识整理,形成系统(由学生归纳,教师完善) 1.椭圆的定义.(注意定义中的三个条件) 2.椭圆的标准方程.(注意焦点的位置与方程形式的关系) 3.标准方程中 a,b,c 的关系. 4.注意体会运动变化、类比推理、抽象概括、数形结合等数学思想方法在数学学习中 的运用. 5.若有时间或机会,可以引导学生得出推导椭圆标准方程更为简单的解法: 同前得, ?x+c?2+y2+ ?x-c?2+y2=2a,① 对①式左边分子有理化,得 4cx=2a( ?x+c?2+y2- ?x-c?2+y2). 2c 即 ?x+c?2+y2- ?x-c?2+y2= x.③ a c ①+③,并整理,得 ?x+c?2+y2=a+ x. a 以下从略. 布置作业 教材习题 2.2.A 组 1,2. 补充练习 基础练习 1.填空题: x2 y2 (1) 2+ 2=1,则 a=______ ,b=______ ; 5 3 (2) x2 y2 + =1,则 a=______ ,b=______ ; 42 62

x2 y2 (3) + =1,则 a=______ ,b=______ ; 9 4 2.求下列椭圆的焦点坐标: x2 y2 (1) + =1 (2)16x2+7y2=112. 9 4 3.求适合下列条件的椭圆的标准方程: (1)a=4 ,b=3,焦点在 x 轴上; (2)b=1 ,c= 15,焦点在 y 轴上; (3)经过点 P(-2 , 0)和 Q(0 , -3). 答案或提示或解答:1.(1)5 3 (2)6

4 (3)3 2

2.(1)( 5,0),(- 5,0) (2)(0,3),(0,-3) x2 y2 y2 y2 x2 3.(1) + =1 (2) +x2=1 (3) + =1 16 9 16 9 4 拓展练习 x2 y2 4.设定点 A(6,2),P 是椭圆 + =1 上的动点,求线段 AP 中点 M 的轨迹方程. 25 9

北京天梯志鸿教育科技有限责任公司

解法剖析:①(代入法求伴随轨迹)设 M(x,y),P(x1,y1);②(点与伴随点的关系)∵M
2 2 ?x1=2x-6, ? x1 y1 为线段 AP 的中点,∴? ③(代入已知轨迹求出伴随轨迹),∵ + =1,∴点 25 9 ? ?y1=2y-2,

?x-3?2 ?y-1?2 1 M 的轨迹方程为 + = ;④伴随轨迹表示的范围. 25 9 4 设计说明 本节借助几何画板的演示功能,使学生通过点的运动,观察到椭圆的轨迹的特征.多媒 体创设问题情境,让探究式教学走进课堂,唤醒学生的主体意识,发展学生的主体能力,让 学生在参与中学会学习、学会合作、学会创新. 学生虽然对椭圆图形有所了解,但只限于感性认识,缺少理性的思考、探索和创新,这 与缺乏必要的数学思想和方法密切相关. 本节课从实例出发, 用多媒体结合本课题设计了一 对动点有规律的运动作一些理性的探索和研究. 在教材处理上,大胆创新,根据椭圆定义的特点,结合学生的认识能力和思维习惯,在 概念的理解上, 先突出“和”, 在此基础上再完善“常数”取值范围. 在标准方程的推导上, 并不是直接给出教材中的“建系”方式, 而是让学生自主地“建系”, 通过所得方程的比较, 得到标准方程,从中去体会探索的乐趣和数学中的对称美和简洁美. 在对教材中“令 a2-c2=b2”的处理并不是生硬地过渡,而是通过课件让学生观察在当 M 为椭圆短轴端点时(但这一几何性质并不向学生交待),特征三角形所体现出来的几何关 系,再做变换. 例题和练习的设计遵循由浅入深,循序渐进的原则,低起点,多落点,高终点,照顾到 各个层次的学生,目的是强化基本技能训练和基本知识的灵活运用. 备课资料 1 平面内两个定点的距离是 8,写出到两个定点的距离的和是 10 的点的轨迹方程. 思路分析:先根据题意判断轨迹,再建立直角坐标系,采用待定系数法得出轨迹方程. 解:这个轨迹是一个椭圆,两个定点是焦点,用 F1,F2 表示.取过点 F1,F2 的直线为 x 轴,线段 F1F2 的垂直平分线为 y 轴. ∵2a=10,2c=8,∴a=5,c=4,b2=a2-c2=52-42=9. x2 y2 所以椭圆的标准方程为 + =1. 25 9 y2 x2 若焦点放在 y 轴上,则椭圆的标准方程为 + =1. 25 9 点评: 对定义的深刻理解是解决此题的关键.当然还要注意全面讨论. 2 已知△ABC 的一边 BC 的长为 6,周长为 16,求顶点 A 的轨迹方程. 思路分析:三角形一边长为定值 6(可看成这条边的两个端点为定点),则另外两边之和 为定值 10,联想椭圆定义即可解决,当然还要注意坐标系的建立. 解:以 BC 所在直线为 x 轴,BC 中垂线为 y 轴建立直角坐标系,设顶点 A(x,y), 根据已知条件得|AB|+|AC|=10. x2 y2 再根据椭圆定义得顶点 A 的轨迹方程为 + =1(特别强调检验). 25 16 因为 A 为△ABC 的顶点,故点 A 不在 x 轴上,所以方程中要注明 y≠0 的条件. 点评:主要考查学生对定义的理解及运用. 3 已知定圆 x2+y2-6x-55=0,动圆 M 和已知圆内切且过点 P(-3,0),求圆心 M 的轨 迹及其方程.
北京天梯志鸿教育科技有限责任公司

思路分析:如图所示,从两个圆相切不难发现|MQ|=8-|MP|,变形为|MQ|+|MP|=8, 又因为|PQ|=6<8,所以圆心 M 的轨迹是以 P,Q 为焦点的椭圆. 点评:此题有一定难度,主要问题是如何引导学生发现|MQ|=8-|MP|. (设计者:吕强 王文清) 教学设计(二) 整体设计 教材分析 (一)教材的地位与作用: 1.从知识上说,它是利用坐标法研究曲线几何性质的又一次实际演练; 2.从方法上说,它为后面研究双曲线、抛物线提供了基本模式和理论基础; 因此,本课题无论从教学内容,还是从数学方法上,都起着承上启下的作用. (二)重点、难点 根据本节在整个数学知识中的地位及学生的思维水平,确定教学重难点如下: 教学重点:椭圆的定义及椭圆的标准方程; 教学难点:椭圆标准方程的建立和推导. 教学目标分析 根据课程标准要求和教材内容,结合学生实际,制定三维教学目标如下: 知识与技能 1.掌握椭圆定义及其标准方程; 2.通过对椭圆标准方程的探求,熟悉求曲线方程的一般方法. 过程与方法 通过自我探究操作、数学思想方法的运用,提高学生实际动手、合作学习以及运用知识 解决实际问题的能力. 情感、态度与价值观 在教学中充分揭示“数与形”的内在联系,体会数、形美的统一,激发学生学习数学的 兴趣,培养学生敢于探索,勇于创新的精神. 教学方法与教学手段 (一)教学方法:根据“倡导积极主动、勇于探索的学习方式”的基本理念,本节教学方 法主要采用引导发现法、探索讨论法,题组教学法. 1.引导发现法: (1)是符合教学原则的; (2)能充分调动学生的主动性和积极性. 2.探索讨论法: (1)有利于学生对知识进行主动建构. (2)有利于突出重点,突破难点. 3.题组教学法:
北京天梯志鸿教育科技有限责任公司

能发展学生等价转化、数形结合等思想,培养学生综合利用知识解决问题的能力. (二)教学手段:为调动学生多种感官,教学中主要采用自制教具、幻灯片、几何画板等 辅助手段. 学法指导 根据考纲及教学内容在学习方法上指导学生: 1.椭圆定义要注意条件; 2.用待定系数法求方程要注意两定,即定位、定量; 3.研究圆锥曲线要注重掌握一般方法. 教学过程 问题设计 设计意图 (一)创设情境,引入课题 用多媒体展示以下片断: 以上展示结果, 既对学生进行了 片断一:神舟六号载人飞船升空照片. 爱国主义教育, 又引入了本节课 片断二: 日常生活中一些圆锥曲线实体及天体运行模拟图. 题. 片断三:用动画演示平面截圆锥时交线的变化情况. (二)尝试探索,归纳总结 画一画: 让学生拿出课前准备好的硬纸板,细线,图钉,教师先点 明作图要点,再让学生与同桌一起合作画图. 议一议: 定义:平面内,到两个定点 F1、 F2 的距离之和等于常数 2a(2a>|F1F2|)的点的轨迹叫做椭圆. 这两个定点叫做椭圆的焦点,两焦点的距离|F1F2|叫做椭圆 的焦距.记|F1F2| =2c. 椭圆定义的再认识 学生归纳: 当 2a>2c→椭圆 当 2a=2c→线段 当 2a<2c→不存在 (三)探索交流,点拨示范 求一求: 根据定义用坐标法求标准方程.

锻炼学生的动手操作能力, 尝到 由作图带来的成功感. 经学生讨论、评议,从作图中总 结出椭圆定义, 从而培养学生的 抽象概括能力及由图形语言到 文字语言的转化能力. 通过改变两图钉间的距离, 让学 生体会条件 2a>2c 的内涵及享受 由图形变换带来的数学美.

根据定义用坐标法求标准方程, 征集学生中不同的建系方案, 指 导学生根据“简单化原则”和 “对称美”思想进行探索. 发散 学生思维,培养探索精神. 在探索过程中,巧设疑难,鼓励 学生大胆提问,张扬学生个性. 课本给出了焦点在 x 轴上的方 程, 让学生尝试推导焦点在 y 轴 上的方程, 给学生充分发挥的空 间.

问一问 问题 1、在探索中得到了椭圆方程 ?x + c? + y + 但不会化简.
2 2

?x-c? + y = 2a,

2

2

x2 y2 问题 2、化简后得到 2 + 2 2=1. a a -c 好像没有猜想的简洁、漂亮,与课本上的标准方程也有一 定距离. 提出椭圆的两种标准方程

北京天梯志鸿教育科技有限责任公司

(四)运用规律,解决问题 用一用: 例 1:判断下列各椭圆的焦点位置,并说出焦点坐标、焦 距. x2 y2 x2 y2 (1) + =1;(2) + =1;(3)3x2+4y2=1; 3 4 4 2 y2 (4)x2+ =1 4 例 2:求适合下列条件的椭圆的标准方程 (1)两个焦点的坐标分别为(-4,0),(4,0),椭圆上一点 P 到 两焦点距离的和等于 10. (2)两个焦点的坐标分别为(0,-2),(0,2),并且椭圆经过 点(-1.5,2.5). (五)巩固训练,深化提高 练一练 题组一:课本本节练习 第 1、2 题.
2 2

旨在转化新知. 先让学生独立思 考,后经讨论得出正确答案,并 用实物投影仪展示学生中的优 秀答案, 培养学生规范答题的意 识.

1.以上题组使学生巩固所学、深 化提高; x y 题组二:已知 F1、F2 是椭圆 + =1 的两个焦点,过 F1 25 9 2.通过变练演编,师生共同讨 的直线交椭圆于 M、N 两点,则得△F2MN 周长为______. 论,教学相长. x2 y2 题组三:若方程 + =1 表示焦点在 x 轴上的椭 25-m 16+m 圆,则 m 的取值范围是______. (六)反思总结,观点提炼 小结 :“一、二、一” 具体为:一个定义(椭圆的定义) 二类方程(焦点分别在 x 轴、y 轴上的两个标准方程) 一种方法(待定系数法) 布置作业: 1.课本 习题 2.1 1、2(任选一题) 2.思考题: 推导焦点在 y 轴上的椭圆的标准方程. 3.研究性题:反思画图,观察椭圆上到焦点的距离最大、 最小的分别是哪个点?

学生总结,教师汇总,培养学生 的概括能力. 巧设研究性问题, 注重锻炼学生 思维,给学生留有空白.

教学评价 (一)本节课安排了导入新课、探索交流、问题点拨、巩固训练等几个教学环节.它是在 教师引导下,通过学生积极思考,主动探求,从而实现教学目的的要求,完成教学任务. (二)在整个教学过程中,采用引导发现法、探索讨论法、题组教学法等教学方法实施教 学,注重化归、数形结合等数学思想的渗透,通过探索,有利于培养学生的创新能力,体现 教育改革的创新精神. (三)教学中采用多媒体等手段,画面丰富生动,使学生的多种感官获得外部刺激,有利 于完善知识结构. (设计者:刘明,本教学设计获山东省优质课评比二等奖.)
北京天梯志鸿教育科技有限责任公司

北京天梯志鸿教育科技有限责任公司


更多相关文档:

2.2.1.1 椭圆及其标准方程(第一课时) 梁

2.2.1 椭圆及其标准方程(第一课时)厦门双十中学 梁莹莹 教学目标: 1. 知识与技能 (1)理解椭圆的定义,掌握椭圆的标准方程; (2)能根据已知条件求椭圆的标准...

2.1.1 椭圆及其标准方程(第 1 课时)

忠源纪念中学高中数学选修 1—1 导学案 §2.1.1 椭圆及其标准方程(第 1 课时) 【学习目标】 1.经历从具体情景中抽象出椭圆模型的过程,掌握椭圆的定义。 2....

椭圆及其标准方程教学设计(第一课时)

椭圆及其标准方程》教学设计(第一课时) 开课老师...标准方程;明确焦点、焦距的概念 2、掌握椭圆标准方程...引导学生观察课本图 2.2-3 ,从中找出 x2 y 2...

《2.2.1椭圆及其标准方程》教学设计

2.2.1椭圆及其标准方程》教学设计_高一数学_数学_高中教育_教育专区。《2....章第二节《椭圆及其标 准方程》第一课时,本节继续采用坐标法来探究椭圆的几何...

2.1.1椭圆及其标准方程(第一课时)导学案

2.1.1椭圆及其标准方程(第一课时)导学案_数学_高中教育_教育专区。椭圆及其标准...5.椭圆方程 所示. 2.取过焦点 F 1 ,F 2 轴,线段 F 1 F 2 的直线为...

高中数学选修2-1新教学案:2.2.1椭圆及其标准方程(1)

2.椭圆的 选修2—1 2.2.1 椭圆及其标准方程(学案)(第 1 课时) 1.两个同学合作,画出课本第 38 页探索中的图形,并思 考在这一 过程中,移动的笔尖(动点...

2.2.1 椭圆及其标准方程第2课时

2.2.1 椭圆及其标准方程第2课时_高二数学_数学_高中教育_教育专区。变革学习方式...2 ,方程 x2 y2 ? ? 1 表示焦点在 x 轴上的椭圆,求 ? 的取值范围. ...

2.2.1 椭圆及其标准方程第1课时导学案

《§2.2.1 椭圆及其标准方程第 1 课时导学案班级: 姓名:___时间:___年...设 P 是椭圆 x2 y2 F1 , F2 是椭圆的两个焦点, ? ? 1 上的一点, ...

2.1.1椭圆及其标准方程教案

2.1.1 椭圆及其标准方程 教学目标: 1.掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程; 2.能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准...

2.1.1 椭圆及其标准方程(第 2 课时)

忠源纪念中学高中数学选修 1—1 导学案 §2.1.1 椭圆及其标准方程(第 2 课时) 【学习目标】 1.掌握运用定义法、待定系数法求椭圆的标准方程。 2.利用中间...
更多相关标签:
椭圆及其标准方程2 | 椭圆的标准方程2 | 椭圆的标准方程 | 椭圆及其标准方程 | 椭圆及其标准方程ppt | 椭圆的标准方程ppt | 椭圆及其标准方程教案 | 椭圆的标准方程教案 |
网站地图

文档资料共享网 nexoncn.com copyright ©right 2010-2020。
文档资料共享网内容来自网络,如有侵犯请联系客服。email:zhit325@126.com