当前位置:首页 >> 其它课程 >> 单相全控桥式晶闸管整流电路的设计(纯电阻负载)

单相全控桥式晶闸管整流电路的设计(纯电阻负载)


1

单相桥式全控整流电路的功能要求及设计方案介绍

1.1 单相桥式全控整流电路设计方案
1.1.1 设计方案
保护电路

单相电源输出

触发电路

整流主电路

负载电路

图 1 设计方案

1

.1.2 整流电路的设计 主电路原理图及其工作波形

图 2 主电路原理图及工作波形
1

主电路原理说明: (1)在 u2 正半波的(0~α )区间,晶闸管 VT1、VT4 承受正向电压, 但无触发脉冲,晶闸管 VT2、VT3 承受反向电压。因此在 0~α 区间,4 个晶闸 管都不导通。 (2)在 u2 正半波的(α ~π )区间,在ω t=α 时刻,触发晶闸管 VT1、 VT4 使其导通。 (3) u2 负半波的 在 (π ~π +α ) 区间, 在π ~π +α 间, 晶闸管 VT2、 VT3 承受正向电压,因无触发脉冲而处于关断状态,晶闸管 VT1、VT4 承受反 向电压也不导通。 (4)在 u2 负半波的(π +α ~2π )区间,在ω t=π +α 时刻,触 发晶闸管 VT2、VT3 使其元件导通,负载电流沿 b→VT3→R→VT2→α →T 的 二次绕组→b 流通,电源电压沿正半周期的方向施加到负载电阻上,负载上 有输出电压(ud=-u2)和电流,且波形相位相同。

2

2

触发电路的设计

2.1 晶闸管触发电路
触发电路在变流装置中所起的基本作用是向晶闸管提供门极电压和门极电 流, 使晶闸管在需要导通的时刻可靠导通。 根据控制要求决定晶闸管的导通时刻, 对变流装置的输出功率进行控制。触发电路是变流装置中的一个重要组成部分, 变流装置是否能正常工作,与触发电路有直接关系,因此,正确合理地选择设计 触发电路及其各项技术指标是保证晶闸管变流装置安全, 可靠, 经济运行的前提。 ,开始启动 A/D 转换;在 A/D 转换期间,START 应保持低电平。 2.1.1 晶闸管触发电路的要求 晶闸管触发主要有移相触发、过零触发和脉冲列调制触发等。触发电路对其 产生的触发脉冲要求: (1)触发信号可为直流、交流或脉冲电压。 (2)触发信号应有足够的功率(触发电压和触发电流) 。 (3)触发脉冲应有一定的宽度, 脉冲的前沿尽可能陡, 以使元件在触发导通后, 阳极电流能迅速上升超过掣住电流而维持导通。 (4)触发脉冲必须与晶闸管的阳极电压同步,脉冲移相范围必须满足电路要 求。 (5)、为使并联晶闸管能同时导通,触发电路应能产生强触发脉冲。强触发电 流幅值为出发电流的3~5倍左右,脉冲前沿的陡度取为1~2 晶闸管触发电路应满足下列要求 (1) 触发脉冲的宽度应该保证晶闸管的可靠导通,对感性和反电动势负载的变 流器采用宽脉冲或脉冲列触发, 对变流器的启动,双星型带平衡电抗器电路的触 发脉冲应该宽于 30°,三相全控桥式电路应小于 60°或采用相隔 60°的双窄脉 冲。 (2) 脉冲触发应有足够的幅度,对户外寒冷场合,脉冲电流的幅度应增大为器 件最大触发电流的 3—5 倍,脉冲前沿的陡度也要增加。一般需达 1-2A/us (3) 所提供的触发脉冲不应超过晶闸管门极的电压、电流和额定功率,且在门 极伏安特性的可靠触发区域之内。 (4)应有良好的抗干扰性能、温度稳定性及主电路的电气隔离。

3

2.1.2 锯齿波的触发电路

图 3 同步信号为锯齿波的触发电路

电路输出可为双窄脉冲(适用于有两个晶闸管同时导通的电路) ,也可为单 窄脉冲。 三个基本环节: 脉冲的形成与放大、 锯齿波的形成和脉冲移相、 同步环节。 此外, 还有强触发和双窄脉冲形成环节。 脉冲形成环节: 由晶体管 V4、V5 组成,V7、V8 起脉冲放大作用。 控制电压 uco 加在 V4 基极上。 电路的触发脉冲由脉冲变压器 TP 二次侧输出, 其一次绕组接在 V8 集电极电路中。 脉冲前沿由 V4 导通时刻确定,脉冲宽度与反向充电回路时间常数 R11C3 有 关。 锯齿波的形成和脉冲移相环节: 锯齿波电压形成的方案较多,如采用自举式电路、恒流源电路等,本电路采 用恒流源电路。 恒流源电路方案由 V1、V2、V3 和 C2 等元件组成,其中 V1、VS、RP2 和 R3
4

为一恒流源电路 同步环节: 触发电路与主电路的同步是指要求锯齿波的频率与主电路电源的频率相同 且相位关系确定。 锯齿波是由开关 V2 管来控制的,V2 开关的频率就是锯齿波 的频率——由同步变压器所接的交流电压决定。V2 由导通变截止期间产生锯齿 波——锯齿波起点基本就是同步电压由正变负的过零点。V2 截止状态持续的时 间就是锯齿波的宽度——取决于充电时间常数 R1C1。 双窄脉冲形成环节: 内双脉冲电路:每个触发单元的一个周期内输出两个间隔 60?的脉冲的电 路。V5、V6 构成一个“或”门,当 V5、V6 都导通时,V7、V8 都截止,没有脉冲 输出。只要 V5、V6 有一个截止,都会使 V7、V8 导通,有脉冲输出。 第一个脉 冲由本相触发单元的 uco 对应的控制角 ? 产生。 60?的第二个脉冲是由滞后 60? 隔 相位的后一相触发单元产生(通过 V6) 。 在 三 相 桥 式 全 控 整 流 电 路 中 , 器 件 的 导 通 次 序 为 VT1-VT2-VT3-VT4-VT5-VT6,彼此间隔 60?,相邻器件成双接通,所以某个器件 导通的同时,触发单元需要给前一个导通的器件补送一个脉冲。 最终输出的脉冲波形为:

图 4 最终输出的脉冲波形

锯齿波同步触发脉冲不受电网电压波动与波形畸变的直接影响,抗干扰能力强, 而且移相范围宽。 (所以我选取该触发器做设计。 )

5

3

保护电路的设计

在电力电子电路中,除了电力电子器件参数选择合适、驱动电路设计, 采用合适的过电压、过电流、du/dt 保护和 di/dt 保护也是必要的。

3.1 过电压保护
电力电子装置中可能发生的过电压分为外因过电压和内应过电压两类。 外因过电压主要来自雷击和系统中的操作过程等外部原因,包括: (1)操作过电压:由分闸、合闸等开关操作引起的过电压,快速直流开关的 切断等经常性操作中的电磁过程引起的过压。 (2)雷击过电压:由雷击引起的过电压。 内因过电压主要来自电力电子装置内部器件的开关过程,包括: (1) 换相过电压: 由于晶闸管或者全控器件反并联的续流二极管在换相结束 后不能立刻恢复阻断能力,因而有较大的反向电流流过,使残存的载流子恢复, 当其恢复了阻断能力时, 反向电流急剧减小,这样的电流突变会因线路电感而在 晶闸管阴阳极之间或与续流二极管反并联的全控型器件两端产生过电压。 (2)关断过电压:全控型器件在较高的频率下工作,当器件关断时,因正 向电流的迅速降低而由线路电感在器件两端感应出的过电压。 过压保护要根据电路中过压产生的不同部位,加入不同的保护电路,当达到 —定电压值时,自动开通保护电路,使过压通过保护电路形成通路,消耗过压储 存的电磁能量, 从而使过压的能量不会加到主开关器件上, 保护了电力电子器件。 为了达到保护效果,可以使用阻容保护电路来实现。将电容并联在回路中, 当电路中出现电压尖峰电压时, 电容两端电压不能突变的特性,可以有效地抑制 电路中的过压。 与电容串联的电阻能消耗掉部分过压能量,同时抑制电路中的电 感与电容产生振荡,过电压保护电路如图 5 所示。

图 5 过电压保护电路

6

3.2 过电流保护
晶闸管承受过电流的能力很低,若过电流数值较大且时间较长,则晶闸管会 因热容量小而产生热击穿损坏。为了使晶闸管不受损坏,必须设置过流保护,使 晶交流侧自动开关或直流侧接触器跳闸。其动作时间约为 100~200ms,因此只能 保护因机械过负载而引起的过电流, 或在短路电流不大时, 对晶闸管起保护作用。 (1)直流快速开关 对于大容量高功率经常容易短路的场合, 可采用动作时间只有 2ms 的直流快 速开关。它的断弧时间仅有 25~30ms,装在直流侧可有效的用于直流侧的过载保 护与短路保护。它经特殊的设计,可以先于快速熔断器熔断而保护晶闸管。但此 开关昂贵复杂,使用不多。 快速熔断器闸管在被损坏之前就迅速切断电流,并断开桥臂中的故障元件, 以保护其他元件。晶闸管过流保护措施有以下几种。 (2)交流短路器 交流短路器的作用是当过电流超过其整定值时动作,切断变压器一次侧交 流电路,使变压器退出运行。短路器动作时间较长,约为 100~200ms。晶闸管不 能在这样长的时间里承受过电流,故它只能作为变流装置的后备保护。 (3)进线电抗器 进线电抗器串接在变流装置的交流进线侧,以限制过电流。其缺点是有负 载时会产生较大的压降,增加了线路损耗。 (4)电流继电器 过电流继电器可安装在直流侧或交流侧, 在发生过 电流时动作,使熔断器是最简单有效的且应用普遍的过 流保护器件。针对晶闸管的特点,专门设计了快速熔断 器,简称快熔。其熔断时间小于 20ms,能很快的熔断, 达到保护晶闸管的目的。 快熔的选择:快熔的额定电压 URN 不小于线路正 常工作电压的均方根值;快熔的额定电流 IRN 应按它所 保护的原件实际流过的电流的均方根值来选择,而不是 根据元件型号上标出的额定电流 IT 来选择,一般小于被 保护晶闸管的额定有效值 1.57IT。快熔接法如图 6 所示:

图 6 快熔接法

其中交流侧接快速熔断器能对晶闸管元件短路及直流侧短路起保护作用, 但要求正常工作时, 快速熔断器电流定额要大于晶闸管的电流定额,这样对元件 的短路故障所起的保护作用较差。直流侧接快速熔断器只对负载短路起保护作 用, 对元件无保护作用。 只有晶闸管直接串接快速熔断器才对元件的保护作用最 好,因为它们流过同—个电流.因而被广泛使用。电子电路作为第一保护措施, 快熔仅作为短路时的部分区段的保护, 直流快速断路器整定在电子电路动作之后 实现保护,过电流继电器整定在过载时动作。
7

4

元件参数计算选取与总电路图

4.1 整流电路参数计算
由图知晶闸管承受的最大正向电压和反向电压分别为 整流电压平均值为:

2 U 2 和 2U2 。 2

Ud ?

? ??

1

?

2U 2 sin ?td(?t ) ?

2 2U 2 1 ? cos? 1 ? cos? ? 0.9U 2 ? 2 2

(1)

a=0 时,Ud= Ud0=0.9U2。α =180?时,Ud=0。可见,a 角的移相范围为 180?。 向负载输出的直流电流平均值为:

Id ?

U d 2 2U 2 1 ? cos? U 1 ? cos? ? ? 0.9 2 R ?R 2 R 2

(2)

流过晶闸管的电流平均值 :
I dT ? U 1 ? cos? 1 I d ? 0.45 2 2 R 2

(3)

流过晶闸管的电流有效值为:

IT ?

1 2?

?? (

?

2U 2 U 1 ? ?? sin ?t )2 d(?t ) ? 2 sin 2? ? R ? 2R 2?

(4)

变压器二次侧电流有效值 I2 与输出直流电流有效值 I 相等,为

I ? I2 ?

( ? ??

1

?

2U 2 U sin ?t ) 2 d (?t ) ? 2 R R

1 ? ?? sin 2? ? 2? ?

(5)

有上两式得

IT ?

1 I 2

(6)

不考虑变压器的损耗时,要求变压器的容量为 S=U2I2。

8

4.2 晶闸管基本参数及选型
4.2.1 晶闸管基本参数

由于单相桥式全控整流带电阻性负载主电路主要元件是晶闸管,所以选取元件时主要考 虑晶闸管的参数及其选取原则。 1.晶闸管的主要参数如下:

(1)额定电压 UTn 通常取 UDRM 和 URRM 中较小的,再取靠近标准的电压等级作为晶闸管型的额定 电压。在选用管子时,额定电压应为正常工作峰值电压的 2~3 倍,以保证电路 的工作安全。 晶闸管的额定电压 : U Tn ? ?minU DRM ,U RRM ? UTn ≥(2~3)UTM UTM :工作电路中加在管子上的最大瞬时电压 (2)额定电流 IT(AV) IT(AV) 又称为额定通态平均电流。其定义是在室温 40°和规定的冷却条件 下,元件在电阻性负载流过正弦半波、导通角不小于 170°的电路中,结温不超 过额定结温时, 所允许的最大通态平均电流值。将此电流按晶闸管标准电流取相 近的电流等级即为晶闸管的额定电流。 要注意的是若晶闸管的导通时间远小于正弦波的半个周期,即使正向电流 值没超过额定值,但峰值电流将非常大,可能会超过管子所能提供的极限,使管 子由于过热而损坏。 (3)通态平均管压降 UT(AV) 。指在规定的工作温度条件下,使晶闸管导通 的正弦波半个周期内阳极与阴极电压的平均值,一般在 0.4~1.2V。 (4)维持电流 IH 。指在常温门极开路时,晶闸管从较大的通态电流降到刚 好能保持通态所需要的最小通态电流。一般 IH 值从几十到几百毫安,由晶闸管 电流容量大小而定。 (5)门极触发电流 Ig 。在常温下,阳极电压为 6V 时,使晶闸管能完全导 通所需的门极电流,一般为毫安级。 (6)断态电压临界上升率 du/dt。在额定结温和门极开路的情况下,不会 导致晶闸管从断态到通态转换的最大正向电压上升率。一般为每微秒几十伏。 (7)通态电流临界上升率 di/dt。在规定条件下,晶闸管能承受的最大通 态电流上升率。若晶闸管导通时电流上升太快,则会在晶闸管刚开通时,有很大 的电流集中在门极附近的小区域内,从而造成局部过热而损坏晶闸管。
9

4.2.2

晶闸管选型

1.晶闸管承受最大的电压是在α =00 的时候,输入电压为 100V,50Hz 的交流电, 功率 P=500W,利用 R= U2/P=10000/500=20 ? 。 2.流过晶闸管的电流有效值:

IT ?

1 2?

?? (

?

2U 2 U 1 ? ?? sin ?t )2 d(?t ) ? 2 sin 2? ? R ? 2R 2?

=(100/1.414*20)*1=3.54A。 3.变压器二次电流有效值与输出直流电流有效值为:

I ? I2 ?

( ? ??

1

?

2U 2 U sin ?t ) 2 d (?t ) ? 2 R R

1 ? ?? sin 2? ? 2? ?

=100/20*1=5A。 4.这时整流电压平均值为: 2 2U 2 1 ? cos? 1 ? 1 ? cos? U d ? ? 2U 2 sin ?td(?t ) ? ? 0.9U 2 ? ? ? 2 2 =0.9*100*1=90V。 5.向负载输出的平均电流值为: U 2 2U 2 1 ? cos? U 1 ? cos? Id ? d ? ? 0.9 2 R ?R 2 R 2 =90/20=4.5A。 6.α 角的移相范围为 00-1800。 7.流过晶闸管的电流平均值只有输出直流平均值的一半 (因为一个周期内每个晶 闸管只有半个周期导通) ,即: 1 U 2 1 ? cos ? I dT ? I d ? 0.45 2 R 2 =0.5*4.5=2.25A。 8.考虑 2 倍的裕量,那么额定电流 I=2.25*2=4.5A。

2 U 2 =70.7V 2 UTN=70.7V*3=210V
9. UDRM=

URRM= 2U2 =141V

综上所述:选择 20 ? 的电阻,选择额定电压为 210V,额定电流为 4.5A,型号为

KP20-4的晶闸管。

10

4.3 电路总接线图

图 8 电路总接线图

5 仿真及结果分析
11

5.1 电阻负载的单相桥式全控整流仿真电路图:

图 8 仿真及结果分析

1.波形图分别代表晶体管 VT 上的电流、晶体管 VT 上的电压、电阻加电感上 的电压。下列波形分别是延迟角α 为 0°、30°、90°、150°时的波形变化。 2.由上面仿真图可以知道, 在五个波形中,第一个的波形表示的是晶闸管的 电流 ivt,第二个是晶闸管的电压 uvt,第三个表示的是负载电阻上的电流 id, 第四个表示的是二次侧绕组的电流 i2,第五个是负载电阻上的电压 ud

5.2 仿真模块参数设置
12

1.交流电源

图 14 交流电源参数设置

对交流电, 电压 “Peak amplitude” 100V, 为 “Phase” 0d, 为 其频率 “Frequency” 设置为 50Hz,周期 T=1/f=1/50=0.02s。 2.电流测量

图 15 电流测量参数设置

“Output signal”设置为 complex。

3.电压测量

13

图 16 电压测量

4.脉冲信号发生器

图 17 脉冲信号发生器参数设置

“pulse type”设置为 Time based, “Time”设置为 Use simulation time, “Amplitude”设置为 1.0,
14

“Period”设置为 0.02, “Pulse Width”设置为 10, Pulse 参数对话框,其中相位延迟 Phase delay 的设置,按关系 t=α T/360°计 算。 1.对交流电 T=0.02s,当α =0°仿真时,pulse1,t=0s,对 pulse2,t=0.01,。 2.当α =30°仿真时,对 pulse1,t=0.00167s,对 pulse2,相位延迟设置为 0.01+0.00167=0.01167s。 3.当α =90°仿真时,对 Pulse1,相位延迟 Phase delay 设置为 t=α T/360° =0.005s,对 pulse2,相位延迟设置为 0.01+0.005=0.015s; 4.当对α =150°仿真时,对 Pulse1,相位延迟 Phase delay 设置为 t=α T/360° =0.00833s,对 pulse2,相位延迟设置为 0.01+0.00833=0.01833s。

5.3 仿真输出图形
α =0°时的波形为

图 9 α=0°时的波形

α =30°时的波形为

15

图 10 α=30°时的波形

α =60°时的波形为

图 11 α=60°时的波形

α =90°时的波形为

16

图 12 α=90°时的波形

α =150°时的波形为

图 13 α=150°时的波形

17

参考文献

[1] 王兆安.电力电子技术(第五版).北京:机械工业出版社,2004.01 Wang Zhao An. Power Electronic Technology(5rd edition).Beijing: Machinery industry press,2004.01 [2] 吴晓燕.MATLAB 在自动控制中的应用.西安:西安电子科技大学出版社, 2006.09 Wu Xiao Yan. MATLAB in automatic control application .XI AN: Xian university of electronic science and technology press,2006.09

18

致谢

本次电力电子设计课程设计是在 xx 老师一个学期的教导下,通过上网查询 资料、翻看书籍、同学间的学习才得以顺利完成的。经过本次设计既锻炼了我 们的独立思考的能力,又使理论知识得以加强巩固,激发了创新意识。 感谢 xx 老师,是他严谨的作风一直不断激励着我,系统的知识灌输着我, 让我在困难的路上不断前行。通过本次设计使我们的动手能力得到了很大的提 高,使我们走出了实践的盲区,为以后的毕业设计及工作后的实践打下了坚实 的基础。 最后感谢 xx 老师和同学们,在我遇到学习困难的时候能够耐心地告诉我, 使每次在解决困难的时候都能学到很多东西,感谢你们一直以来无私的帮助

19

设计体会

通过此次电力电子技术课程设计让我更加深入全面地理解了学过的变流电路 原理的基础知识,理解了一些当初在课堂上不是很懂的知识,为今后的学习和工 作打下坚实的基础。 电力电子技术课程设计是配合变流电路理论教学,此次课程设计是我们的一 个非常重要的实践教学环节。 通过设计,提高了我们运用电路基本理论分析和处 理实际问题的能力,培养了我们的如何运用学过的知识去设计电路的能力。 此次课程设计让我对电力电子技术这门学科有了更深刻的了解,在做课程设 计的过程中通过查找资料, 翻阅课本, 深入了解一些基本原理, 写课程设计报告, 提高了我的综合的学习能力,为我今后的毕业设计做了很好的准备。

20


更多相关文档:

单相全控桥式晶闸管整流电路的设计(纯电阻负载)

1 单相桥式全控整流电路的功能要求及设计方案介绍 1.1 单相桥式全控整流电路设计方案 1.1.1 设计方案保护电路 单相电源输出 触发电路 整流主电路 负载电路 图 ...

单相全控桥式晶闸管整流电路的设计(纯电阻负载)

单相全控桥式晶闸管整流电路的设计(纯电阻负载) 暂无评价|0人阅读|0次下载|举报文档 1 绪论 晶闸管出现前的时期可称为电力电子技术的史前期或黎明时期。 晶闸管由...

单相全控桥式晶闸管整流电路的设计(纯电阻负载)

单相全控桥式晶闸管整流电路的设计(纯电阻负载)_电子/电路_工程科技_专业资料。...电力电子技术题 目单相全控桥式晶闸管整流电路的设计 学生姓名 学学专号院业 ...

单相桥式全控整流电路设计_(纯电阻负载)

2015 年 6 月 5 日 课程设计任务书学生姓名: 指导教师: 题目: 学号: 工作单位:单相全控桥式晶闸管整流电路的设计(纯电阻负载) 初始条件:1、电源电压:交流 100...

单相全控桥式晶闸管整流电路的设计(纯电阻负载)-课程设计

17 III 理工大学《电力电子技术》课程设计说明书 单相全控桥式晶闸管整流电路的设计 (纯电阻负载) 1 单相桥式全控整流电路带电阻负载理论简介 1.1 单相桥式全控...

单相全控桥式晶闸管整流电路(纯电阻负载)

单相全控桥式晶闸管整流电路(纯电阻负载) 隐藏>> 电力电子综合课程设计报告 班 ...原理分析单相桥式全控整流电路是单相整流电路中应用较多的。在单相桥式全控整流...

单相全控桥式晶闸管整流电路的设计(阻感负载)电力电子课程设计

单相全控桥式晶闸管整流电路的设计(阻感负载)电力电子课程设计_电子/电路_工程...例如,R-C 阻容吸收回路、限流电感、快速熔断器、压敏电阻或硒堆等。再一种则...

单相桥式全控整流电路设计 (纯电阻负载)

学号: 0121011360304 课程设计 题学专班姓 目院业级名 单相全控桥式晶闸管整流电路的设计 (纯电阻负载) 自动化学院 自动化专业 自动化 1003 班 刘冬平 许湘莲 ...

单相桥式全控整流电路纯电阻性负载课程设计

? 90 ? 4.纯电阻负载 根据课程设计题目和设计条件,说明主电路的工作原理、计算选择元器件参数。 设计内容包括: 1.整流变压器额定参数的计算 2.晶闸管电流、电压...

单相桥式全控整流电路纯电阻负载

单相桥式全控整流电路纯电阻负载_电子/电路_工程科技_专业资料。中北大学电子技术...3 晶闸管选型 第 3 页共 8 页 中北大学电子技术课程设计 该电路为纯电阻负载...
更多相关标签:
单相晶闸管整流的应用 | 单相桥式整流电路 | 单相桥式全控整流电路 | 单相桥式半控整流电路 | 单相桥式整流滤波电路 | 单相桥式可控整流电路 | 单相桥式整流电路图 | 单相桥式整流电路仿真 |
网站地图

文档资料共享网 nexoncn.com copyright ©right 2010-2020。
文档资料共享网内容来自网络,如有侵犯请联系客服。email:zhit325@126.com