当前位置:首页 >> 数学 >> 随机变量及其分布列.版块三.离散型随机变量的期望与方差1.学生版

随机变量及其分布列.版块三.离散型随机变量的期望与方差1.学生版


数学期望

知识内容
1. 离散型随机变量及其分布列
⑴离散型随机变量 如果在试验中, 试验可能出现的结果可以用一个变量 X 来表示, 并且 X 是随着试验的结 果的不同而变化的,我们把这样的变量 X 叫做一个随机变量.随机变量常用大写字母 X , Y , ? 表示. 如果随机变量 X 的所有可能的取值都能一一列举出来,则称 X 为离散型随机变量. ⑵离散型随机变量的分布列 将离散型随机变量 X 所有可能的取值 xi 与该取值对应的概率 p i (i ? 1, 2, ?, n) 列表表示:

X
P

x1 p1

x2 p2

… …

xi pi

… …

xn pn

我们称这个表为离散型随机变量 X 的概率分布,或称为离散型随机变量 X 的分布列.

2.几类典型的随机分布
⑴两点分布 如果随机变量 X 的分布列为
X q P 其中 0 ? p ? 1 , q ? 1 ? p ,则称离散型随机变量 X 服从参数为 p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为 1 ,不合格记为 0 ,已知产品的合格率 为 80% ,随机变量 X 为任意抽取一件产品得到的结果,则 X 的分布列满足二点分布. X 1
0

1 p

0

P 0.8 0.2 两点分布又称 0 ? 1 分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分 布又称为伯努利分布. ⑵超几何分布 一般地, 设有总数为 N 件的两类物品, 其中一类有 M 件, 从所有物品中任取 n 件 (n ≤ N ) , 这 n 件中所含这类物品件数 X 是一个离散型随机变量,它取值为 m 时的概率为 Cm Cn ? m P( X ? m) ? M nN ? M (0 ≤ m ≤ l , l 为 n 和 M 中较小的一个 ) . CN

我们称离散型随机变量 X 的这种形式的概率分布为超几何分布,也称 X 服从参数为 N , M , n 的超几何分布.在超几何分布中,只要知道 N , M 和 n ,就可以根据公式求出 X 取不同值时的概率 P( X ? m) ,从而列出 X 的分布列.
大家网,全球第一学习门户!无限精彩在大家...www.TopSage.com

⑶二项分布 1.独立重复试验 如果每次试验,只考虑有两个可能的结果 A 及 A ,并且事件 A 发生的概率相同.在相同 的条件下,重复地做 n 次试验,各次试验的结果相互独立,那么一般就称它们为 n 次独 立重复试验. n 次独立重复试验中,事件 A 恰好发生 k 次的概率为 Pn (k ) ? Ck pk (1 ? p)n?k (k ? 0, 1, 2, ?, n) . n 2.二项分布 若将事件 A 发生的次数设为 X ,事件 A 不发生的概率为 q ? 1 ? p ,那么在 n 次独立重复 试验中,事件 A 恰好发生 k 次的概率是 P( X ? k ) ? Ck pk qn?k ,其中 k ? 0 , 1, 2 , ? , n .于 n 是得到 X 的分布列
X
P
0

1
C1 p1qn?1 n

… …

k

… …

n
Cn p n q 0 n

C0 p 0 q n n

Ck p k q n ? k n

由 于 表 中 的 第 二 行 恰 好 是 二 项 展 开 式 0 n ?1 k n 0 n (q ? n p) 0 ? n C? p ? ?n?1 p 1q?n ? ? C C k p n kq C pn q nq 各对应项的值,所以称这样的散型随机变量 X 服从参数为 n , p 的二项分布, 记作 X ~ B(n , p) . 二项分布的均值与方差: 若离散型随机变量 X 服从参数为 n 和 p 的二项分布,则
E ( X ) ? np , D( x) ? npq (q ? 1 ? p) .

⑷正态分布 1. 概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时, 直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变 量 X ,则这条曲线称为 X 的概率密度曲线. 曲线位于横轴的上方,它与横轴一起所围成的面积是 1 ,而随机变量 X 落在指定的两个 b 数 a , 之间的概率就是对应的曲边梯形的面积. 2.正态分布 ⑴ 定义: 如果随机现象是由一些互相独立的偶然因素所引起的, 而且每一个偶然因素在 总体的变化中都只是起着均匀、 微小的作用, 则表示这样的随 y 机现象的随机变量的概率分布近似服从正态分布. x=μ 服从正态分布的随机变量叫做正态随机变量,简称正态变量. 正态变量概率密度曲线的函数表达式为 f ( x) ?
1
? ( x ? ? )2 2? 2

2π ? ? x ? R ,其中 ? , ? 是参数,且 ? ? 0 , ?? ? ? ? ?? .
2

e



式中的参数 ? 和 ? 分别为正态变量的数学期望和标准差.期望

O

x

为 ? 、标准差为 ? 的正态分布通常记作 N ( ? , ? ) . 正态变量的概率密度函数的图象叫做正态曲线. ⑵ 标准正态分布:我们把数学期望为 0 ,标准差为 1 的正态分布叫做标准正态分布. ⑶ 重要结论: ① 正态变量在区间 (? ? ? , ? ? ? ) , (? ? 2? , ? ? 2? ) , (? ? 3? , ? ? 3? ) 内,取值的概率分 别是 68.3% , 95.4% , 99.7% .
? ? ② 正态变量在 (?? , ?) 内的取值的概率为 1 ,在区间 (? ? 3? , ? 3? ) 之外的取值的概率

是 0.3% , 故正态变量的取值几乎都在距 x ? ? 三倍标准差之内, 这就是正态分布的 3? 原
大家网,全球第一学习门户!无限精彩在大家...www.TopSage.com

则. ⑷若 ? ~ N (? , 2 ) , f ( x) 为其概率密度函数, 则称 F ( x) ? P(? ≤ x) ? ??? f (t )dt 为概率分布 ?
x 1 ? t2 ? ?? e dt 为标准正态分布函数. 函数,特别的, ~ N (0 ,2 ) ,称 ? ( x) ? ??? 1 ? 2 π x?? P(? ? x) ? ? ( ). ? 标准正态分布的值可以通过标准正态分布表查得. 分布函数新课标不作要求,适当了解以加深对密度曲线的理解即可.
2

x

3.离散型随机变量的期望与方差
1.离散型随机变量的数学期望 定义:一般地,设一个离散型随机变量 X 所有可能的取的值是 x1 , x 2 ,…, x n ,这些 值对应的概率是 p1 , p2 ,…, pn ,则 E ( x) ? x1 p1 ? x2 p2 ? ? ? xn pn ,叫做这个离散型随 机变量 X 的均值或数学期望(简称期望) . 离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平. 2.离散型随机变量的方差 一般地,设一个离散型随机变量 X 所有可能取的值是 x1 , x 2 ,…, x n ,这些值对应的
2 概率是 p1 , p2 ,…, pn ,则 D( X ) ? (x1 ? E (x ))2 p1 ? (x 2 ? E (x )) p 2 ? ? ? ( n ? E ( )) pn 叫 x x 2 做这个离散型随机变量 X 的方差. 离散型随机变量的方差反映了离散随机变量的取值相对于期望的平均波动的大小 (离散 程度) . D ( X ) 的算术平方根 D( x) 叫做离散型随机变量 X 的标准差,它也是一个衡量离散型随

机变量波动大小的量. b 3. X 为随机变量, a , 为常数,则 E(aX ? b) ? aE( X ) ? b , (aX ? b) ? a 2 D( X ) ; D 4. 典型分布的期望与方差: ⑴ 二点分布:在一次二点分布试验中,离散型随机变量 X 的期望取值为 p ,在 n 次二点 分布试验中,离散型随机变量 X 的期望取值为 np . ⑵二项分布:若离散型随机变量 X 服从参数为 n 和 p 的二项分布,则 E ( X ) ? np , D( x) ? npq (q ? 1 ? p) . M n ⑶ 超几何分布:若离散型随机变量 X 服从参数为 N , , 的超几何分布, n( N ? n)( N ? M ) M nM 则 E( X ) ? , D( X ) ? . N 2 ( N ? 1) N

4.事件的独立性
如果事件 A 是否发生对事件 B 发生的概率没有影响,即 P( B | A) ? P( B) , 这时,我们称两个事件 A , B 相互独立,并把这两个事件叫做相互独立事件. 如果事件 A1 , A2 ,…, An 相互独立,那么这 n 个事件都发生的概率,等于每个事件发 生的概率的积, P( A1 ? A2 ??? An ) ? P( A1 ) ? P( A2 ) ??? P( An ) , 即 并且上式中任意多个事 件 Ai 换成其对立事件后等式仍成立.

5.条件概率
对于任何两个事件 A 和 B ,在已知事件 A 发生的条件下,事件 B 发生的概率叫做条件概 率, 用符号“ P( B | A) ”来表示. 把由事件 A 与 B 的交 (或积) 记做 D ? A ? B(或 D ? AB ) , .
大家网,全球第一学习门户!无限精彩在大家...www.TopSage.com

典例分析
【例1】 投掷 1 枚骰子的点数为 ? ,则 ? 的数学期望为( A. 3 B. 3.5


C. 4 D. 4.5

【例2】 同时抛掷 4 枚均匀硬币 80 次,设 4 枚硬币正好出现 2 枚正面向上, 2 枚反面向

上的次数为 ? ,则 ? 的数学期望是(
A. 20 B. 25


C. 30 D. 40

2 3 4 5 6 【例3】 从 1, , , , , 这 6 个数中任取两个,则两数之积的数学期望为



【例4】 一射手对靶射击,直到第一次命中为止,每次命中率为 0.6 ,现共有 4 颗子弹,

命中后尚余子弹数目 ? 的期望为( )

A. 2.44

B. 3.376

C. 2.376

D. 2.4

【例5】 一个篮球运动员投篮一次得 3 分的概率为 a ,得 2 分的概率为 b ,不得分的概
1 ,已知他投篮一次得分的数学期望为 2(不计其它 率为 c ( a 、 b 、 c ? ? 0 , ? )

得分情况) ,则 ab 的最大值为( 1 1 A. B. 48 24


C.

1 12

D.

1 6

【例6】 一家保险公司在投保的 50 万元的人寿保险的保单中,估计每一千保单每年有

15 个理赔,若每一保单每年的营运成本及利润的期望值为 200 元,试求每一保 单的保费.

【例7】 甲乙两人独立解出某一道数学题的概率依次为 P , 2 ( P ? P2 ) ,已知该题被甲或 1 P 1

乙解出的概率为 0.8 ,甲乙两人同时解出该题的概率为 0.3 ,求: P P ⑴1 , 2 ; ⑵ 解出该题的人数 X 的分布列及 EX .
大家网,全球第一学习门户!无限精彩在大家...www.TopSage.com

【例8】 甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示

只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人
1 都不签约.设每人面试合格的概率都是 ,且面试是否合格互不影响.求签约 2

人数 ? 的数学期望.

【例9】 某批发市场对某种商品的周销售量(单位:吨)进行统计,最近 100 周的统计

结果如下表所示:
周销售量 频数 2 20 3 50 4 30

⑴ 根据上面统计结果,求周销售量分别为 2 吨,3 吨和 4 吨的频率; ⑵ 已知每吨该商品的销售利润为 2 千元,? 表示该种商品两周销售利润的和(单位: 千元) .若以上述频率作为概率,且各周的销售量相互独立,求 ? 的分布列和数学 期望.

【例10】 某项考试按科目 A 、科目 B 依次进行,只有当科目 A 成绩合格时,才可继续参

加科目 B 的考试.已知每个科目只允许有一次补考机会,两个科目成绩均合格
2 方可获得证书. 现某人参加这项考试, 科目 A 每次考试成绩合格的概率均为 , 3

大家网,全球第一学习门户!无限精彩在大家...www.TopSage.com

1 科目 B 每次考试成绩合格的概率均为 .假设各次考试成绩合格与否均互不影 2

响.在这项考试过程中,假设他不放弃所有的考试机会,记他参加考试的次数 为 ? ,求 ? 的数学期望 E? .

【例11】 某同学如图所示的圆形靶投掷飞镖, 飞镖落在靶外 (环数记为 0) 的概率为 0.1 ,

飞镖落在靶内的各个点是椭机的.已知圆形靶中三个圆为同心圆,半径分别为
30 cm 、 20 cm 、 10 cm ,飞镖落在不同区域的环数如图中标示.设这位同学投

掷一次一次得到的环数这个随机变量 X ,求 X 的分布列及数学期望.
8 9 10

【例12】 某商场经销某商品,根据以往资料统计,顾客采用的付款期数 ? 的分布列为

?

1
0.4

2
0.2

3 0.2

4
0.1

5 0.1

P

大家网,全球第一学习门户!无限精彩在大家...www.TopSage.com

商场经销一件该商品,采用 1 期付款,其利润为 200 元;分 2 期或 3 期付款,其利 润为 250 元;分 4 期或 5 期付款,其利润为 300 元.? 表示经销一件该商品的利润. ⑴求事件 A :“购买该商品的 3 位顾客中,至少有 1 位采用 1 期付款”的概率 P( A) ; ⑵求 ? 的分布列及期望 E? .

【例13】 学校文娱队的每位队员唱歌、跳舞至少会一项,已知会唱歌的有 2 人,会跳舞

的有 5 人,现从中选 2 人.设 ? 为选出的人中既会唱歌又会跳舞的人数,且
7 . 10 ⑴ 求文娱队的人数; ⑵ 写出 ? 的概率分布列并计算期望. P(? ? 0) ?

【例14】 一接待中心有 A 、 B 、 C 、 D 四部热线电话.已知某一时刻电话 A 、 B 占线的

概率为 0.5 ,电话 C 、 D 占线的概率为 0.4 ,各部电话是否占线相互之间没有影 响.假设该时刻有 X 部电话占线,试求随机变量 X 的概率分布和它的期望.

大家网,全球第一学习门户!无限精彩在大家...www.TopSage.com

【例15】 某城市有甲、乙、丙 3 个旅游景点,一位客人游览这三个景点的概率分别是
0.4 , ,0.6,且客人是否游览哪个景点互不影响,设 X 表示客人离开该城市 0.5

时游览的景点数与没有游览的景点数之差的绝对值.求 X 的分布及数学期望.

【例16】 某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考

核,否则即被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别
4 3 2 、 、 ,且各轮问题能否正确回答互不影响. 5 5 5 ⑴求该选手被淘汰的概率; ⑵该选手在选拔中回答问题的个数记为 ? ,求随机变量 ? 的分布列与数学期望. (注:本小题结果可用分数表示)



【例17】 在某次测试中,甲、乙、丙三人能达标的概率分别为 0.4 , 0.5 , 0.8 ,在测试

过程中,甲、乙、丙能否达标彼此间不受影响. ⑴ 求甲、乙、丙三人均达标的概率;
大家网,全球第一学习门户!无限精彩在大家...www.TopSage.com

⑵ 求甲、乙、丙三人中至少一人达标的概率; ⑶ X 表示测试结束后达标人数与没达标人数之差的绝对值, X 的概率分布及数 设 求 学期望 EX .

【例18】 在 1,2,3,…,9 这 9 个自然数中,任取 3 个数. ⑴求这 3 个数中恰有 1 个是偶数的概率; ⑵设 ? 为这 3 个数中两数相邻的组数(例如:若取出的数为 1,2,3,则有两组相 邻的数 1,2 和 2,3,此时 ? 的值是 2) .求随机变量 ? 的分布列及其数学期望 E? .

【例19】 甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示

只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人
1 1 都不签约.设甲面试合格的概率为 ,乙、丙面试合格的概率都是 ,且面试 2 3

是否合格互不影响.求: ⑴至少有 1 人面试合格的概率; ⑵签约人数 X 的分布列和数学期望.

【例20】 某公司“咨询热线”电话共有 8 路外线,经长期统计发现,在 8 点到 10 点这段

时间内,外线电话同时打入情况如下表所示:

大家网,全球第一学习门户!无限精彩在大家...www.TopSage.com

电话同时打入个数 ?

0

1

2

3

4

5

6

7

8

0.13 0.35 0.27 0.14 0.08 0.02 0.01 0 0 概率 P ⑴ 若这段时间内,公司只安排了 2 位接线员(一个接线员一次只能接一个电话) . ① 求至少一种电话不能一次接通的概率; ② 在一周五个工作日中,如果至少有三个工作日的这段时间(8 点至 10 点)内至少 一路电话不能一次接通, 那么公司的形象将受到损害, 现用该事件的概率表示公司 形象的“损害度”,求上述情况下公司形象的“损害度”. ⑵ 求一周五个工作日的这段时间(8 点至 10 点)内,电话同时打入数 ? 的期望.

【例21】 某先生居住在城镇的 A 处,准备开车到单位 B 处上班,若该地各路段发生堵车

事件都是独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的 概率,如图. 例如: A ? C ? D 算作两个路段:路段 AC 发生堵车事件的概 ( 率为
1 1 ,路段 CD 发生堵车事件的概率为 ) .记路线 A ? C ? F ? B 中遇到 10 15

堵车次数为随机变量 X ,求 X 的数学期望 E ( X ) .
1

E
3 20

F

12

B

A

1 10

C

1 15

D

【例22】 口袋里装有大小相同的 4 个红球和 8 个白球,甲、乙两人依规则从袋中有放回

摸球,每次摸出一个球,规则如下:若一方摸出一个红球,则此人继续下一次
大家网,全球第一学习门户!无限精彩在大家...www.TopSage.com

摸球;若一方摸出一个白球,则由对方接替下一次摸球,且每次摸球彼此相互 独立,并由甲进行第一次摸球;求在前三次摸球中,甲摸得红球的次数 ? 的分 布列及数学期望.

【例23】 某商场举行抽奖促销活动,抽奖规则是:从装有 9 个白球、 1 个红球的箱子中

每次随机地摸出一个球,记下颜色后放回,摸出一个红球可获得奖金 10 元;摸 出两个红球可获得奖金 50 元.现有甲、乙两位顾客,规定:甲摸一次,乙摸两 次,令 X 表示甲、乙两人摸球后获得的奖金总额.求: ⑴ X 的概率分布;⑵ X 的期望.

【例24】 如图所示,甲、乙两只小蚂蚁分别位于一个单位正方体的 A 点和 C1 点处,每只
大家网,全球第一学习门户!无限精彩在大家...www.TopSage.com

小蚂蚁都可以从每一个顶点处等可能地沿各条棱向每个方向移动,但不能按原
1 路线返回.如:甲在 A 时可沿 AB , AD , AA1 三个方向移动,概率都是 ,到 3 1 达 B 点时,可沿 BC , BB1 两个方向移动,概率都是 .已知小蚂蚁每秒钟移动 2

的距离为 1 个单位. ⑴如果甲、乙两只小蚂蚁都移动 1 秒,则它们所走的路线是异面直线的概率是 多少? ⑵若乙蚂蚁不动,甲蚂蚁移动 3 秒后,甲、乙两只小蚂蚁间的距离的期望值是 多少?
D1 A1 B1 C1(乙)

D A(甲) B

C

【例25】 从集合 ?1, , , , ? 的所有非空子集中,等可能地取出一个. 2 3 4 5 .... ⑴ 记性质 ? : 集合中的所有元素之和为 10 ,求所取出的非空子集满足性质 r 的概率; ⑵ 记所取出的非空子集的元素个数为 ? ,求 ? 的分布列和数学期望 E? .

C 【例26】 某地有 A 、B 、 、D 四人先后感染了甲型 H1N1 流感, 其中只有 A 到过疫区.B

大家网,全球第一学习门户!无限精彩在大家...www.TopSage.com

肯定是受 A 感染的.对于 C ,因为难以断定他是受 A 还是受 B 感染的,于是假 定他受 A 和受 B 感染的概率都是
1 .同样也假定 D 受 A 、 B 和 C 感染的概率都 2

1 是 .在这种假定之下, B 、 C 、 D 中直接受 A 感染的人数 X 就是一个随机变 .. 3

量.写出 X 的分布列(不要求写出计算过程) ,并求 X 的均值(即数学期望) .

【例27】 ⑴ 用红、黄、蓝、白四种不同颜色的鲜花布置如图一所示的花圃,要求同一区

域上用同一种颜色鲜花,相邻区域用不同颜色鲜花,问共有多少种不同的摆放 方案? ⑵ 用红、黄、蓝、白、橙五种不同颜色的鲜花布置如图二所示的花圃,要求同一区 域上用同一种颜色鲜花, 相邻区域使用不同颜色鲜花. 求恰有两个区域用红色鲜 花的概率. ⑶ 条件同⑵ ,记花圃中红色鲜花区域的块数为 X ,求它的分布列及其数学期望 EX .

图一

图二

【例28】 有甲、乙两个箱子,甲箱中有 6 张卡片,其中有 2 张写有数字 0 , 2 张写有数字
大家网,全球第一学习门户!无限精彩在大家...www.TopSage.com

1 ,2 张写有数字 2 ;乙箱中有 6 张卡片,其中 3 张写有数字 0 ,2 张写有数字 1 , 1 张写有数字 2 . ⑴ 如果从甲箱中取出 1 张卡片,乙箱中取出 2 张卡片,那么取得的 3 张卡片都写有数 字 0 的概率是多少? ⑵ 从甲、乙两个箱子中各取一张卡片,设取出的 2 张卡片数字之积为 X ,求 X 的分 布列和期望.

B A A 【例29】 A , 两个代表队进行乒乓球对抗赛, 每队三名队员,A 队队员是 A1 , 2 , 3 ,B

B B 队队员是 B1 , 2 , 3 ,按以往多次比赛的统计,对阵队员之间胜负概率如下:

对阵队员
A1 对 B1 A2 对 B2 A3 对 B3

A 队队员胜的概率
2 3 2 5 2 5

A 队队员负的概率
1 3 3 5 3 5

现按表中对阵方式出场,每场胜队得 1 分,负队得 0 分.设 A 队、B 队最后总分分 ? ? 别为 ? , .求 ? , 的期望.

【例30】 连续抛掷同一颗均匀的骰子,令第 i 次得到的点数为 ai ,若存在正整数 k ,使
大家网,全球第一学习门户!无限精彩在大家...www.TopSage.com

a1 ? a2 ? ?ak ? 6 ,则称 k 为你的幸运数字.

⑴ 求你的幸运数字为 4 的概率; ⑵ k ? 1 ,则你的得分为 6 分;若 k ? 2 ,则你的得分为 4 分;若 k ? 3 ,则你的得 若 分为 2 分;若抛掷三次还没找到你的幸运数字则记 0 分.求得分 ? 的分布列和数学 期望.

【例31】 在某校组织的一次篮球定点投篮训练中,规定每人最多投 3 次;在 A 处每投进

一球得 3 分,在 B 处每投进一球得 2 分;如果前两次得分之和超过 3 分即停止投 篮,否则投第三次,某同学在 A 处的命中率 q1 为 0.25 ,在 B 处的命中率为 q 2 , 该同学选择先在 A 处投一球,以后都在 B 处投,用 ? 表示该同学投篮训练结束 后所得的总分,其分布列为
?
0
0.03

2
p1

3
p2

4
p3

5
p4

p

⑴求 q 2 的值; ⑵求随机变量 ? 的数学期望 E? ; ⑶试比较该同学选择都在 B 处投篮得分超过 3 分与选择上述方式投篮得分超过 3 分的概率的大小.

【例32】 在奥运会射箭决赛中,参赛号码为 1~ 4 号的四名射箭运动员参加射箭比赛.

⑴通过抽签将他们安排到 1~ 4 号靶位,试求恰有两名运动员所抽靶位号与其参
大家网,全球第一学习门户!无限精彩在大家...www.TopSage.com

赛号码相同的概率;
1 2 ? 10 ⑵记 1 号、 2 号射箭运动员射箭的环数为 ? ( ? 所有取值为 0 ,, , , )的

概率分别为 P1 、 P2 .根据教练员提供的资料,其概率分布如下表:
?
P1

0 0 0

1 0 0

2 0 0

3 0 0

4
0.06 0.04

5
0.04 0.05

6
0.06 0.05

7
0.3 0.2

8
0.2 0.32

9
0.3 0.32

10
0.04 0.02

P2

① 1,2 号运动员各射箭一次,求两人中至少有一人命中 9 环的概率; 若 ② 判断 1 号,2 号射箭运动员谁射箭的水平高?并说明理由.

【例33】 某人有 10 万元,准备用于投资房地产或购买股票,如果根据盈利表进行决策,

那么,合理的投资方案应该是哪种? 盈利概率 购买股票盈利 0.3 巨大成功 10 万元 0.5 中等成功 3 万元 0.2 ?5 万元 失败

投资房地产盈利 8 万元 4 万元 ?4 万元

【例34】 甲、乙两名工人加工同一种零件,分别检测 5 个工件,结果分别如下: 31 28 29 30 32 ?甲
大家网,全球第一学习门户!无限精彩在大家...www.TopSage.com

P

0.10

0.15

0.50

0.15 31 0.17

0.10

?乙
P

28
0.13

29
0.17

30
0.40

32
0.13

试比较他们的加工水平.

【例35】 一软件开发商开发一种新的软件,投资 50 万元,开发成功的概率为 0.9 ,若开

发不成功,则只能收回 10 万元的资金,若开发成功,投放市场前,召开一次新 闻发布会,召开一次新闻发布会不论是否成功都需要花费 10 万元,召开新闻发 布会成功的概率为 0.8 ,若发布成功则可以销售 100 万元,否则将起到负面作用 只能销售 60 万元,而不召开新闻发布会则可销售 75 万元. ⑴求软件成功开发且成功在发布会上发布的概率. ⑵如果开发成功就召开新闻发布会的话,求开发商的盈利期望. ⑶如果不召开新闻发布会,求开发商盈利的期望值,并由此决定是否应该召开 新闻发布会.

【例36】 某突发事件,在不采取任何预防措施的情况下发生的概率为 0.3 ,一旦发生,

大家网,全球第一学习门户!无限精彩在大家...www.TopSage.com

将造成 400 万元的损失.现有甲、乙两种相互独立的预防措施可供采用.单独 采用甲、乙预防措施所需的费用分别为 45 万元和 30 万元,采用相应预防措施 后此突发事件不发生的概率为 0.9 和 0.85 .若预防方案允许甲、乙两种预防措 施单独采用、联合采用或不采用,请确定预防方案使总费用最少. (总费用= 采取预防措施的费用+发生突发事件损失的期望值. )

【例37】 最近,李师傅一家三口就如何将手中的 10 万块钱投资理财,提出了三种方案: 第一种方案:将 10 万块钱全部用来买股票.据分析预测:投资股市一年可能获利 1 40% ,也可能亏损 20% (只有这两种可能) ,且获利的概率为 ; 2 第二种方案:将 10 万块钱全部用来买基金.据分析预测:投资基金一年可能获利 3 1 1 20% , 也可能损失 10% , 也可能不赔不赚, 且三种情况发生的概率分别为 , , ; 5 5 5 第三种方案:将 10 万块钱全部存入银行一年,现在存款利率为 4% ,存款利息税率 为 5% . 针对以上三种投资方案,请你为李师傅家选择一种合理的理财方法,并说明理由.

大家网,全球第一学习门户!无限精彩在大家...www.TopSage.com

【例38】 某柑桔基地因冰雪灾害,使得果林严重受损,为此有关专家提出两种拯救果林

的方案,每种方案都需分两年实施;若实施方案一,预计当年可以使柑桔产量 恢复到灾前的 1.0 倍、 0.9 倍、 0.8 倍的概率分别是 0.3 、 0.3 、 0.4 ;第二年可以 使柑桔产量为上一年产量的 1.25 倍、 1.0 倍的概率分别是 0.5 、 0.5 .若实施方 案二,预计当年可以使柑桔产量达到灾前的 1.2 倍、 1.0 倍、 0.8 倍的概率分别 是 0.2 、 0.3 、 0.5 ;第二年可以使柑桔产量为上一年产量的 1.2 倍、 1.0 倍的概 率分别是 0.4 、0.6 . 实施每种方案, 第二年与第一年相互独立. ?i (i ? 1, 表 令 2) 示方案 i 实施两年后柑桔产量达到灾前产量的倍数. ⑴ 写出 ?1 , 2 的分布列; ? ⑵ 实施哪种方案,两年后柑桔产量超过灾前产量的概率更大? ⑶ 不管哪种方案,如果实施两年后柑桔产量达不到灾前产量,预计可带来效益 10 万 元;两年后柑桔产量恰好达到灾前产量,预计可带来效益 15 万元;柑桔产量超过 灾前产量,预计可带来效益 20 万元;问实施哪种方案所带来的平均效益更大?

大家网,全球第一学习门户!无限精彩在大家...www.TopSage.com

【例39】 某企业准备投产一批特殊型号的产品,已知该种产品的成本 C 与产量 q 的函数

关系式为 C ?

q3 ? 3q2 ? 20q ? 10(q ? 0) ,该种产品的市场前景无法确定,有三种 3

可能出现的情况,各种情形发生的概率及产品价格 p 与产量 q 的函数关系式如 下表所示:
市场情形 好 概率 0.4 价格 p 与产量 q 的函数关系式
p ? 164 ? 3q

p ? 101 ? 3q 0.4 中 p ? 70 ? 4q 0.2 差 L L 设 L1 , 2 , 3 分别表示市场情形好、中差时的利润,随机变量 ? k ,表示当产量为 q , 而市场前景无法确定的利润. L L ⑴ 分别求利润 L1 , 2 , 3 与产量 q 的函数关系式;

⑵ 当产量 q 确定时,求期望 E? k ; ⑶ 试问产量 q 取何值时,市场无法确定的利润取得最大值.

【例40】 某电器商由多年的经验发现本店出售的电冰箱的台数 ? 是一个随机变量,它的

分布列 P(? ? k ) ?

1 (? ? 1, , , ,设每售出一台电冰箱,该台冰箱可获利 2 ? 12) 12

300 元,若售不出则囤积在仓库,每台需支付保管费 100 元/月,问:该电器商

月初购进多少台电冰箱才能使自己的月平均收入最大?

大家网,全球第一学习门户!无限精彩在大家...www.TopSage.com

【例41】 某鲜花店每天以每束 2.5 元购入新鲜玫瑰花并以每束 5 元的价格销售, 店主根据

以往的销售统计得到每天能以此价格售出的玫瑰花数 ? 的分布列如表所示,若 某天所购进的玫瑰花未售完,则当天未售出的玫瑰花将以每束 1.5 元的价格降 价处理完毕. ⑴ 若某天店主购入玫瑰花 40 束,试求该天其从玫瑰花销售中所获利润的期望; ⑵ 店主每天玫瑰花的进货量 x ( 30 ≤ x ≤ 50 ,单位:束)为多少时,其有望从玫瑰 花销售中获取最大利润?
?
30 40 50

P

1 3

1 3

1 3

大家网,全球第一学习门户!无限精彩在大家...www.TopSage.com


更多相关文档:

...列.版块三.离散型随机变量的期望与方差3.学生版

随机变量及其分布列.版块三.离散型随机变量的期望与方差3.学生版_数学_自然科学...期望与方差 知识内容 1. 离散型随机变量及其分布列⑴离散型随机变量 如果在试验...

...列.版块三.离散型随机变量的期望与方差2.学生版

随机变量及其分布列.版块三.离散型随机变量的期望与方差2.学生版_数学_自然科学...数学期望 知识内容 1. 离散型随机变量及其分布列⑴离散型随机变量 如果在试验中...

....版块三.离散型随机变量的期望与方差2.学生版

随机变量及其分布列[1].版块三.离散型随机变量的期望与方差2.学生版_数学_...数学期望 知识内容 1. 离散型随机变量及其分布列⑴离散型随机变量 如果在试验中...

随机变量及其分布列.版块三.离散型随机变量的期望与方...

随机变量及其分布列.版块三.离散型随机变量的期望与方差1.学生版 隐藏>> 数学期望 知识内容 1. 离散型随机变量及其分布列⑴离散型随机变量 如果在试验中, 试验可...

随机变量及其分布列[1].版块三.离散型随机变量的期望与...

随机变量及其分布列[1].版块三.离散型随机变量的期望与方差2.学生版。高考数学数学期望 知识内容 1. 离散型随机变量及其分布列⑴离散型随机变量 如果在试验中, ...

2015届高考数学二轮分析:随机变量及其分布列.版块三.离...

2015届高考数学二轮分析:随机变量及其分布列.版块三.离散型随机变量的期望与方差1(北师大版)_高考_高中教育_教育专区。数学期望 【例1】 投掷 1 枚骰子的点数为...

....版块三.离散型随机变量的期望与方差1.学生版

数学期望 知识内容 1. 离散型随机变量及其分布列离散型随机变量 如果在试验中, 试验可能出现的结果可以用一个变量 X 来表示, 并且 X 是随着试验的结 果的不...

随机变量及其分布列.版块一.离散型随机变量及其分布列1...

随机变量及其分布列.版块一.离散型随机变量及其分布列1.学生版_数学_自然科学_...3.离散型随机变量的期望与方差 1.离散型随机变量的数学期望 定义:一般地,设一...

....版块三.离散型随机变量的期望与方差1.学生版

数学期望 知识内容 1. 离散型随机变量及其分布列离散型随机变量 如果在试验中, 试验可能出现的结果可以用一个变量 X 来表示, 并且 X 是随着试验的结 果的不...

...—随机变量及其分布列.版块一.离散型随机变量及其分...

——随机变量及其分布列.版块一.离散型随机变量及其分布列1.学生版_高考_高中...3.离散型随机变量的期望与方差 1.离散型随机变量的数学期望 定义:一般地,设一...
更多相关标签:
网站地图

文档资料共享网 nexoncn.com copyright ©right 2010-2020。
文档资料共享网内容来自网络,如有侵犯请联系客服。email:zhit325@126.com