当前位置:首页 >> 数学 >> 人教版·数学Ⅰ

人教版·数学Ⅰ


『高中代数』234819454.doc

青岛南洋学校 张成宇 2004-9-24-8:44)

课题:§2.1.1 指数
教学目的: (1)掌握根式的概念; (2)规定分数指数幂的意义; (3)学会根式与分数指数幂之间的相互转化; (4)理解有理指数幂的含义及其运算性质; (5)了解无理数指数幂的意义 教学重点:分数指数幂的意义

,根式与分数指数幂之间的相互转化,有理指数幂的运算性质 教学难点:根式的概念,根式与分数指数幂之间的相互转化,了解无理数指数幂. 教学过程: 一、 引入课题 1. 以折纸问题引入,激发学生的求知欲望和学习指数概念的积极性 2. 由实例引入,了解指数指数概念提出的背景,体会引入指数的必要性; 3. 复习初中整数指数幂的运算性质;

a m ? a n ? a m?n ( a m ) n ? a mn ( ab) n ? a n b n
4. 初中根式的概念; 如果一个数的平方等于 a,那么这个数叫做 a 的平方根,如果一个数的立方等于 a,那么这 个数叫做 a 的立方根; 二、 新课教学 (一)指数与指数幂的运算 1.根式的概念 一般地,如果 x ? a ,那么 x 叫做 a 的 n 次方根(n th root) ,其中 n >1,且 n ∈ N .
n
*

当 n 是奇数时,正数的 n 次方根是一个正数,负数的 n 次方根是一个负数.此时, a 的 n 次方 根用符号 n a 表示. 式子 n a 叫做根式 (radical) , 这里 n 叫做根指数 (radical exponent) ,a 叫做被开方数 (radicand) . 当 n 是偶数时,正数的 n 次方根有两个,这两个数互为相反数.此时,正数 a 的正的 n 次方根 用符号 n a 表示,负的 n 次方根用符号- n a 表示.正的 n 次方根与负的 n 次方根可以合并成± n a ( a >0) . 由此可得:负数没有偶次方根;0 的任何次方根都是 0,记作 n 0 ? 0 . 思考: (课本 P58 探究问题) n a n = a 一定成立吗?. (学生活动) 结论:当 n 是奇数时, n a n ? a
——————————————第 1 页 (共 3页)——————————————

『高中代数』234819454.doc

青岛南洋学校 张成宇 2004-9-24-8:44)

当 n 是偶数时, n a n ?| a |? ? 例 1. (教材 P58 例 1) . 解: (略) 巩固练习: (教材 P58 例 1) 2.分数指数幂 正数的分数指数幂的意义 规定:

?a (a ? 0) ?? a (a ? 0)

a ? n a m (a ? 0, m, n ? N * , n ? 1)
a
? m n

m n

?

1 a
m n

?

1
n

a

m

(a ? 0, m, n ? N * , n ? 1)

0 的正分数指数幂等于 0,0 的负分数指数幂没有意义 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数 指数幂的运算性质也同样可以推广到有理数指数幂. 3.有理指数幂的运算性质 (1) a · a ? a
r r r ?s

(a ? 0, r , s ? Q) ;
(a ? 0, r , s ? Q) ;

(2) (a r ) s ? a rs (3) (ab) ? a a
r r s

(a ? 0, b ? 0, r ? Q) .

引导学生解决本课开头实例问题 例 2. (教材 P60 例 2、例 3、例 4、例 5) 说明:让学生熟练掌握根式与分数指数幂的互化和有理指数幂的运算性质运用. 巩固练习: (教材 P63 练习 1-3) 4. 无理指数幂 结合教材 P62 实例利用逼近的思想理解无理指数幂的意义. 指出:一般地,无理数指数幂 a? (a ? 0, ?是无理数 ) 是一个确定的实数.有理数指数幂的运算 性质同样适用于无理数指数幂. 思考: (教材 P63 练习 4) 巩固练习思考: : (教材 P62 思考题) 例 3. (新题讲解)从盛满 1 升纯酒精的容器中倒出

1 1 升,然后用水填满,再倒出 升,又用水 3 3

填满,这样进行 5 次,则容器中剩下的纯酒精的升数为多少? 解: (略) 点评:本题还可以进一步推广,说明可以用指数的运算来解决生活中的实际问题. 三、 归纳小结,强化思想
——————————————第 2 页 (共 3页)——————————————

『高中代数』234819454.doc

青岛南洋学校 张成宇 2004-9-24-8:44)

本节主要学习了根式与分数指数幂以及指数幂的运算,分数指数幂是根式的另一种表示形式, 根式与分数指数幂可以进行互化.在进行指数幂的运算时,一般地,化指数为正指数,化根式为分 数指数幂,化小数为分数进行运算,便于进行乘除、乘方、开方运算,以达到化繁为简的目的,对 含有指数式或根式的乘除运算,还要善于利用幂的运算法则. 四、 作业布置 1. 必做题:教材 P69 习题 2.1(A 组) 第 1-4 题. 2. 选做题:教材 P70 习题 2.1(B 组) 第 2 题.

——————————————第 3 页 (共 3页)——————————————


更多相关文档:

人教版高中数学必修1_全册导学案

人教版高中数学必修1_全册导学案_数学_高中教育_教育专区。1.1.1 集合的含义...(二)合作探讨 1、 (Ⅰ)观察二次函数 f ( x) ? x ? 2 x ? 3 的...

人教版数学选修1-1课后习题答案(扫描版)_图文

人教版数学选修1-1课后习题答案(扫描版)_高二数学_数学_高中教育_教育专区。答案 文档贡献者 weizhengzhuang 贡献于2012-03-28 ...

人教版高中数学选修2-1知识点小结

人教版高中数学选修2-1知识点小结_数学_高中教育_教育专区。最全面的期末知识点总结及典型例题!选修2-1 知识点选修 2-1 第一章 常用逻辑用语 1、命题:用语言...

2014人教版高中数学必修1知识点总结

2014人教版高中数学必修1知识点总结_高一数学_数学_高中教育_教育专区。高一数学必修 1 各章知识点总结 第一章 集合与函数概念 一、集合有关概念 1. 集合的含义...

人教版小学数学教材全套目录最新(1)

人教版小学数学教材全套目录最新(1)_数学_小学教育_教育专区。人教版小学数学教材全套目录 一年级上册第一单元 准备课 1. 数一数 2.比多少 第二单元 位置 1....

人教版小学数学1-6年级详细目录

人教版小学数学1-6年级详细目录_六年级数学_数学_小学教育_教育专区。教材简介 人教版课标版小学数学教材目录及内容简介 一年级上册一、数一数(不是正常的教学内容...

人教版数学选修1-1课后习题答案(扫描版)_图文

人教版数学选修1-1课后习题答案(扫描版)_高二数学_数学_高中教育_教育专区。数学答案 文档贡献者 风华正茂love 贡献于2011-10-14 ...

人教版·数学Ⅰ_§1[1].1.3集合的基本运算

人教版·数学Ⅰ_§1[1].1.3集合的基本运算 高一数学必修1集合的教案高一数学必修1集合的教案隐藏>> 『高中数学必修 1』6537773.doc的基本运算 课题:§1.3 集...

人教版·数学Ⅰ_§1.2.1函数的概念

人教版·数学Ⅰ_§1.2.1函数的概念_数学_高中教育_教育专区 暂无评价|0人阅读|0次下载|举报文档人教版·数学Ⅰ_§1.2.1函数的概念_数学_高中教育_教育专区...

人教版·数学Ⅰ_§2.1.1指数

人教版·数学Ⅰ_§2.1.1指数 隐藏>> 『高中代数』192832798.doc 青岛南洋学校 张成宇 2004-9-24-8:44) 课题:§2.1.1 指数教学目的: (1)掌握根式的概念...
更多相关标签:
网站地图

文档资料共享网 nexoncn.com copyright ©right 2010-2020。
文档资料共享网内容来自网络,如有侵犯请联系客服。email:zhit325@126.com