当前位置:首页 >> 数学 >> 2.2.1等差数列

2.2.1等差数列


英格教育文化有限公司 http://www.e-l-e.net.cn

全新课标理念,优质课程资源

2.2.1 等差数列
学习目的: 1.明确等差数列的定义,掌握等差数列的通项公式; 2.会解决知道 an , a1 , d , n 中的三个,求另外一个的问题 学习重点:等差数列的概念,等差数列的通项公式 学习难点:等差数列的性质 内容分析: 本节是等差数列这一部分,在讲等差数列的概念时,突出了它与一次函数的联系,这 样就便于利用所学过的一次函数的知识来认识等差数列的性质: 从图象上看, 为什么表示等 差数列的各点都均匀地分布在一条直线上,为什么两项可以决定一个等差数列(从几何上看 两点可以决定一条直线) 课堂过程: 一、复习引入: 上两节课我们学习了数列的定义及给出数列和表示的数列的几种方法——列举法、 通项 公式、 递推公式、 图象法和前 n 项和公式..这些方法从不同的角度反映数列的特点 下面我们
王新敞
奎屯 新疆

王新敞
奎屯

新疆

看这样一些例子 1.小明觉得自己英语成绩很差,目前他的单词量只 yes,no,you,me,he 5 个 他决定从今天 起每天背记 10 个单词,那么从今天开始,他的单词量逐日增加,依次为:5,15,25,35,? (问:多少天后他的单词量达到 3000?)
王新敞
奎屯 新疆

2.小芳觉得自己英语成绩很棒,她目前的单词量多达 3000 她打算从今天起不再背单词 了,结果不知不觉地每天忘掉 5 个单词,那么从今天开始,她的单词量逐日递减,依次为:
王新敞
奎屯 新疆

3000,2995,2990,2985,? (问:多少天后她那 3000 个单词全部忘光?) 从上面两例中,我们分别得到两个数列 ① 5,15,25,35,? 和 ② 3000,2995,2990,2980,? 请同学们仔细观察一下,看看以上两个数列有什么共同特征?? ·共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差)(误:每相 ; 邻两项的差相等——应指明作差的顺序是后项减前项) ,我们给具有这种特征的数列一个名 字——等差数列 二、讲解新课: 1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个 常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示) ⑴.公差 d 一定是由后项减前项所得,而不能用前项减后项来求;
王新敞
奎屯 新疆

⑵.对于数列{ an },若 an - a n ?1 =d (与 n 无关的数或字母),n≥2,n∈N ,则此数列 是等差数列,d 为公差
王新敞
奎屯 新疆

?

2.等差数列的通项公式: an ? a1 ? (n ? 1)d 【或 an ? am ? (n ? m)d 】 等差数列定义是由一数列相邻两项之间关系而得 若一等差数列 ?an ? 的首项是 a1 ,公
王新敞
奎屯 新疆

差是 d,则据其定义可得:
学习方法报社 第 1 页 共 5 页

英格教育文化有限公司 http://www.e-l-e.net.cn

全新课标理念,优质课程资源

a2 ? a1 ? d 即: a2 ? a1 ? d

a3 ? a2 ? d 即: a3 ? a2 ? d ? a1 ? 2d
a4 ? a3 ? d 即: a4 ? a3 ? d ? a1 ? 3d
?? 由此归纳等差数列的通项公式可得: an ? a1 ? (n ? 1)d ∴已知一数列为等差数列,则只要知其首项 a1 和公差 d,便可求得其通项 an 如数列①1,2,3,4,5,6; an ? 1 ? (n ? 1) ? 1 ? n (1≤n≤6) 数列②10,8,6,4,2,?; an ? 10 ? (n ? 1) ? (?2) ? 12 ? 2n (n≥1) 数列③ ; , ; ,1,L ;
王新敞
奎屯 新疆

1 2 3 4 5 5 5 5

an ?

1 1 n ? (n ? 1) ? ? (n≥1) 5 5 5

由上述关系还可得: am ? a1 ? (m ? 1)d 即: a1 ? am ? (m ? 1)d 则: an ? a1 ? (n ? 1)d = am ? (m ? 1)d ? (n ? 1)d ? am ? (n ? m)d 即的第二通项公式

an ? am ? (n ? m)d

∴ d=

am ? an m?n

如: a5 ? a4 ? d ? a3 ? 2d ? a2 ? 3d ? a1 ? 4d 三、例题讲解 例 1 ⑴求等差数列 8,5,2?的第 20 项 ⑵ -401 是不是等差数列-5,-9,-13?的项?如果是,是第几项? 解:⑴由 a1 ? 8, d ? 5 ? 8 ? 2 ? 5 ? ?3 n=20,得 a20 ? 8 ? (20 ? 1) ? (?3) ? ?49 ⑵由 a1 ? ?5, d ? ?9 ? (?5) ? ?4 得数列通项公式为: an ? ?5 ? 4(n ? 1) 由题意可知,本题是要回答是否存在正整数 n,使得 ? 401? ?5 ? 4(n ? 1) 成立解之得 n=100,即-401 是这个数列的第 100 项
王新敞
奎屯 新疆

例 2 在等差数列 ?an ? 中,已知 a5 ? 10 , a12 ? 31,求 a1 , d , a20 , an
学习方法报社 第 2 页 共 5 页

英格教育文化有限公司 http://www.e-l-e.net.cn

全新课标理念,优质课程资源

解法一:∵ a5 ? 10 , a12 ? 31,则

?a1 ? 4d ? 10 ? ?a1 ? ?2 ? ? ?d ? 3 ?a1 ? 11d ? 31
a20 ? a1 ? 19d ? 55

∴ an ? a1 ? (n ? 1)d ? 3n ? 5

解法二:∵ a12 ? a5 ? 7d ? 31 ? 10 ? 7d ? d ? 3 ∴ a20 ? a12 ? 8d ? 55 小结:第二通项公式

an ? a12 ? (n ? 12)d ? 3n ? 5

王新敞
奎屯

新疆

an ? am ? (n ? m)d

例 3 将一个等差数列的通项公式输入计算器数列 un 中, 设数列的第 s 项和第 t 项分别为

us 和 u t ,计算

u s ? ut 的值,你能发现什么结论?并证明你的结论 解:通过计算发现 s?t
王新敞
奎屯 新疆

u s ? ut 的值恒等于公差 s?t
证明:设等差数列{ un }的首项为 u 1 ,末项为 un ,公差为 d,

?u s ? u1 ? ( s ? 1)d ? ?u t ? u1 ? (t ? 1)d

(1) (2)
? u s ? ut ?d s ?t

⑴-⑵得 us ? ut ? (s ? t )d

小结:①这就是第二通项公式的变形,②几何特征,直线的斜率 例 4 梯子最高一级宽 33cm,最低一级宽为 110cm,中间还有 10 级,各级的宽度成等 差数列,计算中间各级的宽度
王新敞
奎屯 新疆

解:设 ?an ? 表示梯子自上而上各级宽度所成的等差数列, 由已知条件,可知: a1 =33,

a12 =110,n=12
解得: d ? 7

∴ a12 ? a1 ? (12 ? 1)d ,即 10=33+11 d

, 因此, a2 ? 33 ? 7 ? 40, a3 ? 40 ? 7 ? 47, a4 ? 54, a5 ? 61 a6 ? 68, a7 ? 75, a8 ? 82, a9 ? 89, a10 ? 96, a11 ? 103 ,
答:梯子中间各级的宽度从上到下依次是 40cm,47cm,54cm,61cm,68cm,75cm, 82cm,89cm,96cm,103cm.

学习方法报社

第 3 页 共 5 页

英格教育文化有限公司 http://www.e-l-e.net.cn

全新课标理念,优质课程资源

例 5 已知数列{ an }的通项公式 an ? pn ? q ,其中 p 、 q 是常数,那么这个数列是否一定 是等差数列?若是,首项与公差分别是什么? 分析:由等差数列的定义,要判定 ?an ? 是不是等差数列,只要看 an ? an?1 (n≥2)是不 是一个与 n 无关的常数
王新敞
奎屯 新疆

解:当 n≥2 时, (取数列 ?an ? 中的任意相邻两项 a n ?1 与 an (n≥2) )

an ? an?1 ? ( pn ? q) ? [ p(n ? 1) ? q] ? pn ? q ? ( pn ? p ? q) ? p 为常数
∴{ an }是等差数列,首项 a1 ? p ? q ,公差为 p
王新敞
奎屯 新疆

解:当 n≥2 时, (取数列 ?an ? 中的任意相邻两项 a n ?1 与 an (n≥2) )

an ? an?1 ? ( pn ? q) ? [ p(n ? 1) ? q] ? pn ? q ? ( pn ? p ? q) ? p 为常数
∴{ an }是等差数列,首项 a1 ? p ? q ,公差为 p 四、练习: 1.(1)求等差数列 3,7,11,??的第 4 项与第 10 项. 分析:根据所给数列的前 3 项求得首项和公差,写出该数列的通项公式,从而求出所求 项. 解:根据题意可知: a1 =3,d=7-3=4. ∴该数列的通项公式为: an =3+(n-1)×4,即 an =4n-1(n≥1,n∈N*) ∴ a4 =4×4-1=15, a10 =4×10-1=39. 评述:关键是求出通项公式. (2)求等差数列 10,8,6,??的第 20 项. 解:根据题意可知: a1 =10,d=8-10=-2. ∴该数列的通项公式为: an =10+(n-1)×(-2),即: an =-2n+12, ∴ a 20 =-2×20+12=-28. 评述:要注意解题步骤的规范性与准确性. (3)100 是不是等差数列 2,9,16,??的项?如果是,是第几项?如果不是,说明 理由. 分析:要想判断一数是否为某一数列的其中一项,则关键是要看是否存在一正整数 n 值,使得 an 等于这一数. 解:根据题意可得: a1 =2,d=9-2=7.
学习方法报社 第 4 页 共 5 页
王新敞
奎屯 新疆

英格教育文化有限公司 http://www.e-l-e.net.cn

全新课标理念,优质课程资源

∴此数列通项公式为: an =2+(n-1)×7=7n-5. 令 7n-5=100,解得:n=15, ∴100 是这个数列的第 15 项. (4)-20 是不是等差数列 0,-3 说明理由. 解:由题意可知: a1 =0,d=-3

1 ,-7,??的项?如果是,是第几项?如果不是, 2

1 2 7 7 n+ , 2 2

∴此数列的通项公式为: an =- 令-

7 7 47 n+ =-20,解得 n= 2 2 7 7 7 因为- n+ =-20 没有正整数解,所以-20 不是这个数列的项. 2 2
2.在等差数列{ an }中, (1)已知 a4 =10, a7 =19,求 a1 与 d; (2)已知 a3 =9, a9 =3,求 a12 . 解: (1)由题意得: ?

?a1 ? 3d ? 10 , ?a1 ? 6d ? 19

解之得: ?

?a1 ? 1 . ?d ? 3

(2)解法一:由题意可得: ?

?a1 ? 2d ? 9 ?a1 ? 11 , 解之得 ? ?d ? ?1 ?a1 ? 8d ? 3

∴该数列的通项公式为: an =11+(n-1)×(-1)=12-n,∴ a12 =0 解法二:由已知得: a9 = a3 +6d,即:3=9+6d,∴d=-1 又∵ a12 = a9 +3d,∴ a12 =3+3×(-1)=0. Ⅳ.课时小结 五、小结 通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:
?

an - a n?1 =d , n ≥ 2 , n ∈ N (

).其次,要会推导等 差数列的 通项公式:

an ? a1 ? (n ? 1)d , 并 掌 握 其 基 本 应 用 . 最 后 , 还 要 注 意 一 重 要 关 系 式 : an ? am ? (n ? m)d 和 an =pn+q (p、q是常数)的理解与应用.

学习方法报社

第 5 页 共 5 页


赞助商链接
更多相关文档:

2.2.1等差数列

2.2.1 等差数列》教学方案教师行为 学生学习活动 设计意图 一、创设情境,导入新课上两节课我们学习了数列的定义及给出数列和 请同学们仔细观察一下, 表示的...

2.2.1等差数列

2.2.1等差数列_高一数学_数学_高中教育_教育专区。等差数列(一)教学目标 1.知识与技能:通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;能在具 体...

2.2.1等差数列的通项公式

教学目标与重难点 1. 知识与技能目标: 理解等差数列的概念; 掌握等差数列的通项公式.能用等差数列的通项公式解决相应 的一些问题。 2.过程与方法目标: 让学生...

2.2.1等差数列的定义及通项公式(小结练习)

2.2.1等差数列的定义及通项公式(小结练习)_数学_高中教育_教育专区。第二章 数列 2.2.1 等差数列的定义及通项公式一、选择题 1. {an}为等差数列,且 a7...

高中数学必修5:2.2.1等差数列

高中数学必修5:2.2.1等差数列_数学_高中教育_教育专区。高中数学必修5:2.2.1等差数列学英语报社 http://www.e-l-e.net.cn 全新课标理念, 优质课程资源 ...

2.2.1等差数列

2.2.1等差数列 等差数列,高中数学,数列,优秀教案。等差数列,高中数学,数列,优秀教案。隐藏>> 英格教育文化有限公司 http://www.e-l-e.net.cn 全新课标理念...

2.2.1等差数列练习题

2.2.1等差数列练习题 隐藏>> 等差数列基础练习题一、基础知识过关 1、等差数列定义的符号语言:___; 2、若三个数 a, A, b 构成等差数列,则 A ? ___;...

2.2.1等差数列

2.2.1等差数列_数学_高中教育_教育专区。弘德中学高二数学学案(必修 5) 制作人:吴仁庭 编号 4 2.2.1 等差数列(一) 一、学习目标:1、理解等差数列的概念;...

§2.2.1_等差数列的前n项和

§2.2.1_等差数列的前n项和_数学_高中教育_教育专区。海岳中学高二年级组 编写人:冯国堂 审核人: 领导签字: 姓名: 班级: 小组: 使用时间: 编号:05 §2....

2.2.1等差数列的概念及通项公式导学案

2.2.1等差数列的概念及通项公式导学案_高二数学_数学_高中教育_教育专区。等差数列的概念及通项公式导学案白城实验高中 高二数学 必修 5 编号: 2 编制人:张晶...

更多相关标签:
网站地图

文档资料共享网 nexoncn.com copyright ©right 2010-2020。
文档资料共享网内容来自网络,如有侵犯请联系客服。email:zhit325@126.com