当前位置:首页 >> 数学 >> 第三讲数列前n项和求法

第三讲数列前n项和求法


第三讲
1、公式法
等差数列前 n 项和: Sn ?

数列前 n 项和的求法
n(a1 ? an ) n(n ? 1) ? na1 ? d 2 2

?na1 ? 等比数列前 n 项和: sn ? ? a1 1 ? q n ? 1? q ?

?

?

,q ?1 ,q ?1

其他常用公式:
n 1 1、 S n ? ? k ? n(n ? 1) 2 k ?1

n 1 2、 S n ? ? k 2 ? n(n ? 1)(2n ? 1) 6 k ?1 n 1 3、 S n ? ? k 3 ? [ n(n ? 1)]2 2 k ?1

2、分组法求和
适用于通项公式为 ?an ?bn ? ,其中 ?an ? 是等差数列, ?bn ?是等比数列
例 2、 求数列的前 n 项和: 1 ? 1,

1 1 1 ? 4, 2 ? 7,? ? ?, n?1 ? 3n ? 2 ,… a a a

1 1 1 1 1 ,2 ,3 ,? ? ?, (n ? n ),? ? ? 练习 1、求数列 2 4 8 的前 n 项和. 2

2、求数列{n(n+1)(2n+1)}的前 n 项和.

1

3、裂项法求和
通项分解(裂项)如: (1) an ? f (n ? 1) ? f (n) (2) a n ?

1 1 1 ? ? n(n ? 1) n n ? 1 1 1 1 1 ? [ ? ] n(n ? 1)(n ? 2) 2 n(n ? 1) (n ? 1)(n ? 2) 1 1? 2 , 1 2? 3 ,? ? ?, 1 n ? n ?1 ,? ? ? 的前 n 项和.

(3) an ?

例 3、求数列

练习 1、 在数列{an}中, an ?

1 2 n 2 ? ? ??? ? ,又 bn ? , n ?1 n ?1 n ?1 a n ? a n ?1

求数列{bn}的前 n 项的和.

2、求

1 1 1 1 , , , 之和。 3 15 35 63

4、错位相减法
适用于 ?an ? bn ?的前 n 项和,其中 ?an ?是等差数列, ?bn ?是等比数列.
例 4、 求和: S n ? 1 ? 3x ? 5x ? 7 x ? ? ? ? ? (2n ? 1) x
2 3 n?1

练习 1、求数列

2 4 6 2n , 2 , 3 ,? ? ?, n ,? ? ? 前 n 项的和. 2 2 2 2

2、求:Sn=1+5x+9x2+· · · · · ·+(4n-3)xn-1
2

同步练习
1、设{an}是公比为正数的等比数列 a1=2,a3=a2+4. (Ⅰ)求{an}的通项公式; (Ⅱ)设{bn}是首项为 1,公差为 2 的等差数列,求数列{an+bn}的前 n 项和 Sn.

2、已知等差数列{an}满足 a2=0,a6+a8=﹣10 (I)求数列{an}的通项公式; (II)求数列{ }的前 n 项和.

3、已知{an}是公差不为零的等差数列,a1=1,且 a1,a3,a9 成等比数列. (Ⅰ)求数列{an}的通项; (Ⅱ)求数列

?2 ?的前 n 项和 S .
an
n

3

4、已知数列{an}满足, (1)令 bn=an+1﹣an,证明:{bn}是等比数列; (2)求{an}的通项公式.

,n∈N .

×

5、已知数列{an}是一个公差大于 0 的等差数列,且满足 a3a6=55,a2+a7=16 (1)求数列{an}的通项公式; (2)数列{an}和数列{bn}满足等式 an= 的前 n 项和 Sn. (n∈N*) ,求数列{bn}

6、设数列{an}的前 n 项和为 Sn=2an﹣2 , (Ⅰ)求 a1,a4 (Ⅱ)证明:{an+1﹣2a
n

n

}是等比数列;

(Ⅲ)求{an}的通项公式.

4


赞助商链接
更多相关文档:

前n项和的求法总结

前n项和的求法总结 - 数列前 n 项和求法总结 核心提示:求数列的前 n 项和要借助于通项公式,即先有通项公式,再在分析数列通项公式 的基础上,或分解为...

数列前n项和的求法

数列前n项和求法 - 数列求和的基本方法 一.利用常用求和公式求和 1.等差数列求和公式: S n ? n(a1 ? an ) n(n ? 1) ? na1 ? d 2 2 na1 (q...

数列前n项和的求法习题版

数列前n项和求法习题版_高二数学_数学_高中教育_教育专区。数列前 n 项和求法 1.基础求和 (1)等差数列 S ? f( Sn ? n(a1 ? an ) n(n ? 1)...

求数列前N项和的七种方法(含例题和答案)

数列前N项和的七种方法(含例题和答案)_数学_高中教育_教育专区。求数列前 N 项和的七种方法 1. 公式法等差数列前 n 项和: Sn ? n(a1 ? an ) n(...

数列的前n项和求法

数列前n项和求法 - 数列的前 n 项和 一、公式法 1、通项公式: (1) 、等差数列的通项公式:an=a1+(n-1)d=am+(n-m)d; (2) 、等比数列的通项...

求数列的前n项和的方法讲义

求数列前n项和的方法讲义_数学_高中教育_教育专区。求数列前 n 项和的方法一、公式法 ①等差数列前 n 项和公式: Sn= n?a1+an? n?n-1? =na1+...

专题二 数列前n项和的求法

专题二 数列前n项和求法 - 在数学的领域中,提出问题的艺术比解答问题的艺术更为重要。——康扥尔 专题二 数列前 n 项和求法 咸丰一中 杨金煜 一、公式...

数列前n项和的求法

数列前n项和求法 - 专题二: 数列前 n 项和求法 一、倒序相加法求数列的前 n 项和 如果一个数列{an},与首末项等距的两项之和等于首末两项之和,...

求数列的前n项和方法

求数列前n项和方法 - 求数列前 n 项和 一.用倒序相加法求数列前 n 项和 如果一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把...

求数列的前n项和常用方法

求数列前n项和常用方法 - 数列求和的常用方法 1.公式法:①等差数列求和公式;②等比数列求和公式, 特别声明 :运用等比数列求和公式,务必检查其公比与 1 的关系...

更多相关标签:
网站地图

文档资料共享网 nexoncn.com copyright ©right 2010-2020。
文档资料共享网内容来自网络,如有侵犯请联系客服。email:zhit325@126.com