当前位置:首页 >> 数学 >> 2013-2014高三理科限时训练23

2013-2014高三理科限时训练23


2013–2014 学年高三理科数学限时训练(23) (三角函数部分)

2013-2014 学年高三数学(理科)限时训练(23)
1. tan ? ? 3 ? 0 的解集是 A. ? ? 60
?

(

)

B. (k? ?

?
3

, k? ?

?
2

), k ? Z .

C. ? ? ?60

?

D. (k? ?

?
3

, k? ?

?
2

), k ? Z .

2.函数 y ? sin A.2

x x ? sin(60 ? ? ) 的最大值是 ( 2 2
B. 3

) C. 2 D.1 )

2 ? ?sin(?x ), ?1 ? x ? 0 3.函数 f ( x ) ? ? x ?1 ,若 f (1) ? f (a) ? 2 ,则 a 的所有可能值为( ? ?e , x ? 0

A.1

B. 1,?

2 2

C. ?

2 2

D. 1,

2 2

4.有四个关于三角函数的命题: p1 : ?x ? R,sin 2 x ? cos 2 x ? 1

2

2

2

p2 : ?x? y ? R,sin(x-y)=sinx-siny
)

p3 : ?x ? [0? ? ]? 1 ? cos2x ? sinx , p4 :sinx=cos y ? x ? y ? ? ,其中的假命题是( 2 2
A. p1 ? p4 B. p2 ? p4
2
2

C. p1 ? p3 ( )

D. p2 ? p3

5.若 cos(x+y)cos ( x ? y) ? 1 ? 则 cos x ? sin y 等于

3

A. ? 1

3

B. 1

3

C. ? 2

3

D. 2

3

6 .已知函数 f ( x) ? sin(wx ?

?
4

)( x ? R, w ? 0) 的最小正周期为 ? ,将 y ? f ( x) 的图像向左平移
) D.

| ? | 个单位长度,所得图像关于 y 轴对称,则 ? 的一个值是(
A.

? 2
? 2

B.

3? 8

C.

? 4

? 8


7.若 ? , ? ? (0, ) , cos(? ?

? 3 ? 1 , sin( ? ? ) ? ? ,则 cos(? ? ? ) 的值等于( )? 2 2 2 2
C.

A. ?

3 2

B. ?

1 2

1 2

D.

3 2

8.已知函数 f ( x) ? a sin x ? b cos x ( a 、 b 为常数, a ? 0 , x ? R )在 x ? 则函数 y ? f (

?
4

处取得最小值,

3? ? x) 是( 4

)函数且它的图象关于点(

)对称。 (



2013–2014 学年高三理科数学限时训练(23) (三角函数部分)

3? 3? C.奇, ( D.奇, (? ,0) ,0) ,0) 2 2 sin x ? a 9.设 a ? 0 ,对于函数 f ? x ? ? ) (0 ? x ? ? ) ,下列结论正确的是( sin x
A.偶, (? ,0) B.偶, ( A.有最大值而无最小值 B.有最小值而无最大值 C.有最大值且有最小值 D.无最值 10.已知 k<-4,则函数 y=cos2x+k (cosx-1)的最小值是( A.1 B.-1
2

) D. -2k+1 .

C.2k+1

11.化简 sin 2 (? ? ? ) ? sin 2 (? ? ? ) ? sin ? 得的结果是

6

6

x 2 ,则 f( ? )=________________。 12.f(x)=2tanx- x x 12 si n cos 2 2 1 ? 2 cos 2

13. 已知函数 f ( x) ? sin x ? tan x .项数为 27 的等差数列 ?a n ?满足 a n ? ? ? 若 f (a1 ) ? f (a 2 ) ? ? ? f (a 27 ) ? 0 ,则当 k =________时, f (a k ) ? 0 . 14.当 0 ? x ?

? ? ?? 且公差 d ? 0 . , ?, ? 2 2?

?
4

时,函数 f ( x) ?

cos 2 x ? 1 的最小值是 sin x cos x ? sin 2 x

.?

15、已知函数 f (t ) ?

1? t 17? , g ( x) ? cos x ? f (sin x) ? sin x ? f (cos x), x ? (? , ). 1? t 12

(Ⅰ)将函数 g ( x) 化简成 A sin(? x ? ? ) ? B ( A ? 0 , ? ? 0 , ? ? [0, 2? ) )的形式; (Ⅱ)求函数 g ( x) 的值域.

班级: 题 号 答 案

姓名:

学号:

得分: 1 0

1

2

3

4

5

6

7

8

9

11.________________________; 13._________________________; 15.

12._____________________________; 14._____________________________.

2013–2014 学年高三理科数学限时训练(23) (三角函数部分)

11.当 0 ? x ? 【答案】 8

?
4

时,函数 f ( x) ?

cos2x ?1 的最小值是 sinxcosx ? sin 2x

.?

【解析】 f ( x) ?

cos2x ? 1 sinxcosx ? sin 2x

?

2cos 2x 2 ? . 2 sinxcosx ? sin x tanx ? tan 2x

又 0 ? x ? ? ? ∴令 t=tan x ? (0?1) .

4

∴ t ? t ? ?(t ? 1 ) ? 1 ? (0? 1 ] .
2 2

2

4

4

∴ f ( x) ?[8? ??)? 即 f ( x) min ? 8 .

6.若 cos(x+y)cos ( x ? y) ? 1 ? 则 cos x ? sin y 等于
2
2

3

(

) D. 2

A. ? 1

3

B. 1

3

C. ? 2

3

3

【答案】 B 【解析】 由 cos ( x ? y ) ? cos ( x ? y) ? 1 ? 得

3

(cosxcosy-sinxsin y ) ? ( cosxcosy+sinxsin y) ? 1 .

3

2 2 2 ∴cos x ? cos y-sin x ? sin y ? 1 3 .
2

2 ∴cos x ? (1 ? sin y ) ? (1 ? cos x ) ? sin y ? 1 .
2 2

2

3

整理得 cos x ? sin y ? 1 .
2

2

3

7.已知下列各式中,值为 1 的是(

2

) B. cos
2

A. sin15?cos15?

? ? sin 2 ?
6

6

2013–2014 学年高三理科数学限时训练(23) (三角函数部分)

C.

tan30? 1 ? tan 2 30?

D. 1 ? cos30?

2

【答案】 B 【解析】 ∵ sin15?cos15? ? 1 sin30? ?

2

1 4

;

cos 2 ? ? sin 2 ? ? cos ? ? 1 ;

6

6

3

2

tan30? ? 1 ? 2tan30? ? 1 ? tan60? ? 3 ; 2 1 ? tan 2 30? 2 1 ? tan 2 30? 2

1 ? cos30? ? cos15? =cos(45 ? ? 30? ) 2
= cos45?cos30? ? sin45?sin30? ?

6? 2 . 4

已知函数 f ( x) ? sin( x ?

?

? x ) ? cos( x ? ).g ( x) ? 2sin 2 . 6 3 2
3 3 .求 g (? ) 的值; 5

(I)若 ? 是第一象限角,且 f (? ) ?

(II)求使 f ( x) ? g ( x) 成立的 x 的取值集合.

【答案】解: ( I) f ( x) ?

3 1 1 3 3 3 . sin x ? cos x ? cos x ? sin x ? 3 sin x ? f (? ) ? 3 sin ? ? 2 2 2 2 5

3 ? 4 ? 1 ? sin ? ? ,? ? (0, ) ? cos? ? , 且g (? ) ? 2 sin 2 ? 1 ? cos? ? 5 2 5 2 5
(II) f ( x) ? g ( x) ? 3 sin x ? 1 ? cos x ?

3 1 ? 1 sin x ? cos x ? sin(x ? ) ? 2 2 6 2

? x?

?
6

? [2k? ?

?
6

,2k? ?

5? 2? ] ? x ? [2k? ,2k? ? ], k ? Z 6 3

16.

2013–2014 学年高三理科数学限时训练(23) (三角函数部分)

7.下列关系式中正确的是( A. sin11 ? cos10 ? sin168
0 0 0

) B. sin168 ? sin11 ? cos10
0 0 0 0 0

C. sin11 ? sin168 ? cos10
0 0

0

D. sin168 ? cos10 ? sin11

0


更多相关文档:

2013-2014高三理科限时训练30.doc

恒为负数 20132014 学年高三理科数学限时训练(30) (数列部分) 11.若等差数列的前 6 项和为 23,前 9 项和为 57,则数列的前 n 项和 S n = ___. ...

2013-2014高三理科限时训练32.doc

22 ? 2 ? 23 ? 3 ? 24 ? … ? (n ? 1) ? 2 ? n ? 2 . ② 20132014 学年高三理科数学限时训练(32) (数列部分) ①-②,得 ? S n ? 2...

2013-2014高三理科限时训练13.doc

20132014 学年高三理科数学限时训练(13) (函数部分) 11.已知函数 f(x)=e...∴ ? 23 5 ? a ?1. ? f (5) ? 0? ) B. [ 1 ? 1 ] 7.函数...

2013-2014高三理科限时训练43.doc

20132014 学年高三理科数学限时训练(43) (概率与统计部分) 2013-2014 学年高三数学(理科)限时训练(43) 1.设某项试验的成功率是失败率的 2 倍,用随机变量...

2013-2014高三理科限时训练31.doc

210 ? ? ? 23n?10 (n ? N ) ,则 f ( n) 等于( A. 2 n (8 ?...2 15 20132014 学年高三理科数学限时训练(31) (数列部分) 11.已知数列{ ...

2013-2014高三理科限时训练33.doc

20132014 学年高三理科数学限时训练(33) (数列部分) 2013-2014 学年高三...2n n 2 2 2 23 2 2n ?1 1? ①②两式相减得: 1 S n ? 3 ? 2(...

2013-2014高三理科限时训练42.doc

20132014 学年高三理科数学限时训练(42) (概率与统计部分) (2)

2013-2014高三理科限时训练47.doc

20132014 学年高三理科数学限时训练(47) (直线与圆) 2013-2014 学年高三数学(理科)限时训练(47) 1.点 P(2,-1)为圆 ( x ? 1) ? y ? 25 内弦 ...

2013-2014高三理科限时训练45.doc

2013-2014高三理科限时训练45 - 20132014 学年高三理科数学

2013-2014高三理科限时训练69.doc

2013-2014高三理科限时训练69 - 2013-2014 高三理科数学限时

2013-2014高三理科限时训练48.doc

20132014 学年高三理科数学限时训练(48) (直线与圆) 2013-2014 学年高三数学(理科)限时训练(48) 1.直线 l:y-1=k(x-1)和圆 x ? y ? 2 y ? 0 ...

2013-2014高三理科限时训练46.doc

20132014 学年高三理科数学限时训练(46) (直线与圆) 2013-2014 学年高三数学(理科)限时训练(46) 1.已知直线 ax+y+5=0 与 x-2y+7=0 垂直,则 a 为...

2013-2014学年高三理科限时训练(14).doc

2 则下列函数的图象错误的是( ? ?x +1,x∈[0,1], 20132014 学年高三理科数学限时训练(14) (函数部分) 9.设函数 f(x)=log3 A. (?1, ? log3...

阳东二中2014届高三理科数学限时训练(23).doc

阳东二中2014高三理科数学限时训练(23) - 阳东二中 2014高三理科数学限时训练(23) 班别: 姓名: 学号: 分数: 2013.11.25 一、选择题 1.函数 y=sin(....

高三理科限时训练20.doc

高三理科限时训练20 - 高三理科限时训练(20) 班级 3? x 的定义域为

2014届高三理科数学限时训练(6份,一天一练).doc

2014高三理科数学限时训练(6份,一天一练) - 2014高三理科数学限时训练(45) 姓名: 2 班级: 成绩: ) 1、 设曲线 y ? ax 在点 (1, a ) 处的切线...

2013-2014高三下学期化学限时训练.doc

2013-2014高三下学期化学限时训练 - 2012-2013 郸城一高高三下学期化学限时训练 10 命题人:张志敏 2013-05-07 一、选择题 (每题只有一个最佳选项,每题四分,...

2013届高三数学理科限时训练题5.doc

2013高三数学理科限时训练题5_数学_高中教育_教育专区。2013高三数学理科限时训练题 基础训练(8+6+2有详解) 2013高三数学理科限时训练题(5)一.选择题:...

2014届高三理科数学限时训练(七)(含答案).doc

2014高三理科数学限时训练(七)(含答案) - 2014高三理科数学 限时训练(第 ?0 班级: 姓名: 一、选择题: a ? 2i 1、已知 ? b ? i (a, b ? R...

2013高考数学(理科)小题限时训练4.doc

2013高考数学(理科)小题限时训练4 - 2013 高考数学(理科)小题限时训练四 15 小题共 75 分,时量:45 分钟,考试时间:2012 年 8 月 30 日第 6 节一、选择...

更多相关标签:
网站地图

文档资料共享网 nexoncn.com copyright ©right 2010-2020。
文档资料共享网内容来自网络,如有侵犯请联系客服。email:zhit325@126.com