当前位置:首页 >> 数学 >> 四川省巴中市四县中11-12学年高一数学上期期末联考

四川省巴中市四县中11-12学年高一数学上期期末联考


四川省巴中市四县中 2011-2012 学年上期期末联考高一数学试题
时间:120 分钟 满分:150 分

一、选择题: (本大题共 12 小题,每小题 5 分,共 60 分)在每小题给出的四个选项中,只有 一个符合题目要求的。 1、化简 AB ? BC ? CA ? ( A、 AC 2、sin2012°是( A、正数 ) B、负数 C、零 ) D、 y ? x
1 2

) C、 CA D、 0

B、 BA

D、不存在

3、下列函数中,在区间(0,+∞)上是增函数的是(

2 A、 y ? x
4、已知函数 f(x)= ? A、–3

B、 y ? ? x ? 2
2

1 x C、 y ? ( ) 2


?x ( x ? 4), x ? 0 ,则 f[f(–3)]=( ?x ( x ? 4), x ? 0
B、525 C、357

D、21

5、今有一组实验数据如下表所示: t u 1.99 1.5 3.0 4.04 4.0 7.5 ) C、 u ? ) B、0.7 <6 < log 0.7 6 D、 log 0.7 6 <0.7 <6
6 0.7 6 0.7

5.1 12

6.12 18.01

则最佳体现这些数据关系的函数模型是( A、u=log2t
0.7 6

B、u=2 -2

t

t2 ?1 2

D、u=2t-2

6、三个数 6 ,0.7 , log 0.7 6 的大小顺序是( A、0.7 < log 0.7 6 <6
0.7 6 0.7 6

C、 log 0.7 6 <6 <0.7

7、下列函数中,既是偶函数又是以π 为最小正周期的周期函数的是( A、y=sinx B、y=|sinx| C、y=cosx

) D、y=tanx

8、学习正切函数 y=tanx 后, “数学哥”赵文峰同学在自己的“数学葵花宝典”中,对其性质 做了系统梳理: ①正切函数是周期函数,最小正周期是π ②正切函数是奇函数 ③正切函数的值域是实数集 R,在定义域内无最大值和最小值

用心

爱心

专心

-1-

④正切函数在开区间( ?

? ? , ? k? , ? k? ) k ? z 内都是增函数,不能说在整 2 2
? ? k? , k ? z 2

个定义域内是增函数;正切函数不会在某一个区间内是减函数。 ⑤与正切曲线不相交的直线是 x ?

⑥正切曲线是中心对称图形,其对称中心坐标是 ( 以上论断中正确的有( A、3 个 ) B、4 个

k? ,0) , k ? z 2
D、6 个 )

C、5 个

9、若方程 ln x ? 2x ? 6 ? 0 的实数根为 m,则 m 所在的一个区间是( A、 (3,4) 10、函数 f ( x ) ? 3 sin(2x ? B、 (

? ) 的图象为 C: 3 11 ①图象 C 关于直线 x ? ? 对称; 12 ? 5? ②函数 f ( x ) 在区间 (? , ) 内是增函数; 12 12 ? ③由 y=3sin2x 的图象向右平移 个单位长度可以得到图象 C; 3
以上三个论断中,正确论断的个数是( A、0 B、1 个 ) C、2 个

5 ,3) 2

C、 (2,

5 ) 2

D、 (

3 ,2) 2

D、3 个

11、对于函数 f ( x ) 定义域中任意的 x1,x2(x1≠x2)有如下结论: ① f ( x1 ? x 2 ) ? f ( x1 ) ? f ( x 2 ) ③ ② f (x1 ? x 2 ) ? f (x1 ) ? f (x 2 ) ④f(

f (x1 ) ? f (x 2 ) ?0 x1 ? x 2
x

x1 ? x 2 f (x1 ) ? f ( x 2 ) )? 2 2

当 f ( x ) ? 3 时,上述结论中正确的是( A、②③ B、②④

) D、①④

C、①③

12、定义在 R 上的偶函数 f ( x ) 满足 f (x ? 2) ? f (x) ,且在[-3,-2]上是减函数,若α ,β 是 锐角三角形的两个内角,则下列不等式中正确的是( A、 f (cos ?) ? f (cos ?) C、 f (sin ?) ? f (sin ?) )

B、 f (sin ?) ? f (cos ?) D、 f (cos ?) ? f (sin ?)

二、填空题:(本大题共 4 小题,每小题 4 分,共 16 分) 13、化简 (1 ? tan ?) cos ? ?
2 2

14、已知 A(-1,-1) ,B(1,3) ,C(m,5)三点共线,则 C 点的坐标是

用心

爱心

专心

-2-

15、若 4 ? 4
x

?x

?

10 ,则 x log3 4 ? 3

16、有以下叙述: ①一条弦的长度等于半径,这条弦所对的圆心角等于 1 弧度

? 是第一或第三象限角 2 3? k? ? k? 5? ③函数 y ? ? tan(2x ? ) 的单调递减区间是 ( ? , ? ), k ? z 4 2 8 2 8
②已知 ? 是第一象限角,那么 ④ cos x ? 1.5 可能成立
2

⑤若 2 =5 =m,且

a

b

1 1 ? ? 1, 则m=1 a b

⑥ 4 (3 ? ?) 4 ? 3 ? ? 必定成立 其中所有正确叙述的序号是 三、解答题: (本大题共 6 小题,共 74 分)解答应写出文字说明、证明过程或推演步骤。 17、 (12 分)已知函数 f ( x ) ? (Ⅰ)求 A∩B; (Ⅱ)若 C ? {y | a ? y ? 2a ? 1} ,且 C ? B ,求实数 a 的取值范围。 18、 (12 分)已知函数 f ( x ) ?

x ? 2 的定义域为 A,函数 g( x ) ?

2 (1 ? x ? 2) 的值域为 B。 x

x2 1? x2

(Ⅰ)求 f ( 2) 与 f ( ) , f (3) 与 f ( ) ; (Ⅱ)由(Ⅰ)中求得结果,你能发现当 x ? 0 时, f ( x ) 与 f ( ) 有什么关系?并证明你的发 现;

1 2

1 3

1 x

1 ). 2012 ? ? 19、 (12 分)设函数 f ( x ) ? 3sin(?x ? ), ? ? 0, x ? (??,??), 且以 为最小正周期。 2 6
(Ⅲ)求 f (1) ? f (2) ? f (3) ? ? ? f(2012) ? f( ) ? f( ) ? ? ? f( (Ⅰ)求 f(0); (Ⅱ)求 f(x)的解析式; (Ⅲ)已知 f (

1 2

1 3

? ? 9 ? ) ? ,求 sinα 的值。 4 12 5
2

20、 (12 分)已知函数 f ( x ) ? x ? 2x sin ? ? 1, x ? [?

3 1 , ] 2 2

用心

爱心

专心

-3-

(Ⅰ)当 sin ? ?

1 时,求 f(x)的最大值与最小值; 2

(Ⅱ)若 f(x)在 x ? [?

3 1 , ] 上是单调函数,且 ? ?[0,2?) ,求θ 的取值范围。 2 2
y 3 2

? 21、 (12 分)已知函数 f ( x ) ? A sin(?x ? ?) ? b(A ? 0, ? ? 0, | ? |? ) 2
的部分图象如下图所示。 (Ⅰ)求函数 f ( x ) 的解析式; (Ⅱ)求函数 f ( x ) 的单调递增区间; (Ⅲ)若不等式 | f ( x ) ? m |? 2 在 x ? [0, ?] 上 恒成立,求实数 m 的取值范围。

2? ?? 3 ? ? ? 3

1 0

? 2? 3 3

?

x

-1

22、每年高考试卷中,都有一些源于教材,高于教材的好题闪亮登场。它们虽千姿百态、常 考常新,但其根与灵魂却在课本之中。 某中学鸿志班“快乐函数”学习团队在老师的指导下,开展了“六月猜想——高中数学 课本题根研究”活动,激发起同学们解题、编题、猜题的浓厚兴趣。 下面是该团队以必修一 P82.8 题为题根,集体创编的一道重基础、考能力的好题。请聪 慧的你一试刀枪。 (14 分)已知函数 f ( x ) ? lg

1? x 1? x a?b ); 1 ? ab

(Ⅰ)①判断函数的奇偶性,并加以证明; ②若 a , b ?(-1,1) ,计算 f (a ) ? f (b) ? f ( (Ⅱ)若函数 g(x ) ? f (x ) ? x ? m 在 [0,

9 ] 上恒有零点,求实数 m 的取值范围; 11 1 1 1 1 (Ⅲ)若 n 为正整数,求证: f ( ) ? f ( ) ? ? ? f( 2 ) ? f( ) . 5 11 2 n ? 3n ? 1

用心

爱心

专心

-4-

四川省巴中市四县中 2011-2012 学年上期期末联考 高一数学参考答案及评分意见 (命题与解答 一、选择题(5'×12=60') 题号 答案 1 D 2 B 3 D 4 B 5 C 15、±1; 6 D 7 B 8 D 9 B 10 C 11 D 12 D 四川省巴中中学特级教师 萧 斌 2012 年元月)

二、填空题(4'×4=16') 13、1; 14、 (2,5) ;

16、②③;

1、解: AB ? BC ? CA ? AC ? CA ? 0 ,选 D 2、解:2012°=360°×5+212°∴2012°角的终边在第三象限,sin2012°<0,选 B 3、解:选 D 4、解:f[f(-3)]=f(21)=525,选 B 5、解: (t,u)的前 2 组值近似为(2,1.5)(3,4) , ,代入检验可知选 C。 6、解:6 >6°=1,0<0.7 <0.7 =1, log 0.7 6 < log 0.7 1 =0,故选 D,或用图像法。 7、解:由偶函数排除 A,D;由π 为周期排除 C,故选 B
用心 爱心 专心 -50.7 6 0

8、解:全对,选 D 9、 设 f(x)=lnx+2x-6,则 f ( ) ? ln 解: B

5 2

5 5 ? 5 ? 6 ? ln e ? 1 ? 0, f (3) ? ln 3 ? 0 ? ? m ? 3 2 2



11 11 ? 时 , f ( ?) ? ?3 为 最 小 值 , ① 可 选 ; ② 由 12 12 ? ? ? ? ? ? 2k? ? 2x ? ? ? 2kx , k ? Z ,得递增区间,②可选;③y=3sin2x 向右平移 个单位 3 2 3 2 2? ? 长度,得 y=3sin[2(x ? )]=3sin(2x ? ), ③不可选。故选 C 3 3
10 、 解 : ① 当 x ? 11、①④正确,②③错。 12、解:∵f(x)满足 f(x+2)=f(x), ∴f(x)是周期函数且 T=2 ∵f(x)在[-3,-2]上是减函数, ∴f(x)在[-1,0]上是减函数 又 f(x)是偶函数, ∴f(x) 在[0,1]上是增函数, ∵α ,β 是锐角三角形的两个内角∴0<α ,β < ∴

? ? ? >β > -α >0,而 y=sinx 在(0, )上为增函数, 2 2 2 ? ? ∴sin >sinβ >sin( -α )>sin0, 1>sinβ >cosα >0 ∴f(sinβ )>f(cosα ).选 D 2 2
13、解:原式= cos α + sin α =1 14、解: AB =(2,4), AC =(m+1,6) ∵ AB // AC C(2,5) 15、解: 4 ?
x
2 2

? ? ,且α +β > 2 2

∴2×6-4(m+1)=0,

m=2,



1 1 ? 3? x 3 4

∴ 4 ? 3或4 ?
x x

1 ∴x=log43 或 x= -log43∴原式=±1 3

16、解:①④⑤⑥错,②③对。 命题潜规则: 1 题:必修四 P91.4(1)题; 4 题:必修一 P45.4 题改编; 8 题:必修四 P42 改编; 11 题:必修一 P82.7 题及 P45.5 题改编; 相关的题; 13 题:必修四 P22.1 题; 15 题:必修—P75.2 题逆向变式题; 16 题:必修一 P50 例 1;P83.2 题及必修四 三、解答题(12'×5+14'=74') 17、解: (Ⅰ)由 x ? 2 ? 0 ? x ? 2 ∴ A ? {x | x ? 2} ? [2,??) ∵ g( x ) ?

2 题:创编; 7 题:必修 P60 例 2 改编; 9 题:必修一 P88 例题改编; 12 题:心修一 P39.3 题,必修四 P46.10 题 14 题:必修四 P98.例 7 逆向变式题; P10.5-6 题;P47.2 题;P70.13 题汇总改编。

(2 分)

2 (1 ? x ? 2) 是减函数 ∴ g(2) ? g(x) ? g(1) , 1 ? g(x) ? 2 x
(4 分) ( 6

∴ B ? {y | 1 ? y ? 2} ? [1,2] ∴A∩B ? {2} (或 A∩B={x|x≥2}∩{y|1≤y≤2}={x|x=2}={2} 分) (Ⅱ)由(Ⅰ)知 B ? {y | 1 ? y ? 2} ,又 C ? B
用心 爱心 专心

-6-

①当 C ? ? 时,满足 C ? B ,此时 a ? 2a ?1 ②当 C ? ? 时,由 C ? B ,得: ?a ? 1
?a ? 2a ? 1 ? ?2a ? 1 ? 2 ?

∴a ?1
?1? a ? 3 2

(8 分)

(11 分)

3 综上,a 的取值范围为 (??, ] 2

(12 分)

命题潜规则:必修一 P44.4 题及 P74.7 题变式题。
1 1 ( )2 ( )2 1 1 1 1 4 32 9 ? (4 分) ? , f (3) ? 2 18、 解: (Ⅰ) f (2) ? ? ,f( ) ? 2 ? ,f( ) ? 3 2 2 1 2 10 1 2 5 3 2 5 10 1? 2 1 ?3 1? ( ) 1? ( ) 3 2

22

1 (Ⅱ)由(Ⅰ)可发现 f (x) ? f ( ) ? 1(x ? 0) , x
1 x2 ? 证明如下: f ( x ) ? f ( ) ? x 1? x2 1 ( )2 x2 1 x ? ? ?1 1 2 1? x2 1? x2 1? ( ) x

(6 分)

(8 分)

1 1 1 (III)由(II)知: f (2) ? f ( ) ? 1 , f (3) ? f ( ) ? 1 ,?, f (2012 ? f ( ) ) ?1 2 3 2012

1 1 1 ∴原式 ? f (1) ? [f (2) ? f ( )] ? [f (3) ? f ( )] ? ? ? [f(2012)? f( )] 2 3 2012
1 1 ? 1 ? 1 ? ? ? 1 ? 2011 2 2 2011 (12 分) 个 ?

命题潜规则:必修一 P44.8 题创编。
? 3 ? 6 2
p \ f(x) = 3sin(4x + ) 6

19、解: (Ⅰ)由题设可知 f (0) ? 3sin (Ⅱ)∵ f ( x ) 的最小正周期为

(3 分) (6 分)

? 2? ?4 ,? ? ? ? 2
2

? ? ? ? 9 3 (Ⅲ)由 f ( ? ) ? 3sin(? ? ? ) ? 3cos? ? ? cos? ? 且 ? 为第一或第四象限角 ( 8 5 4 12 3 6 5

分) 当 ? 为第一象限角时, sin ? ? 1 ? cos2 ? ?
2

4 ; 5

(10 分)

当 ? 为第四象限角时, sin ? ? ? 1 ? cos ? ? ? 20、解: (Ⅰ)当 sin ? ?
1 1 5 时, f (x) ? x 2 ? x ? 1 ? (x ? ) 2 ? 2 2 4

4 5
(2 分)

(12 分)

? f ( x ) 在 [?

3 1 1 1 ,? ] 上单调递减,在 [? , ] 上单调递增 2 2 2 2
用心 爱心 专心 -7-

1 1 5 1 ∴当 x ? ? 时, f (x) min ? ? (4 分) ;当 x ? 时, f (x) max ? ? 。 2 4 4 2
(Ⅱ) f ( x ) 的图象对称轴为 x ? ? sin ? ,要使 f ( x ) 在 x ? [?
? sin ? ? ? ?sin ? ? 3 1 或 - sin? ? 2 2

(6 分)

3 1 , ] 上是单调函数,则需: 2 2

(9 分) (12 分)

3 1 ? 2? 7? 11 或sin? ? ? ∵ ? ? [0,2?) ? ? ? [ , ] U [ , ?] 2 2 3 3 6 6

命题潜规则:必修一 P44.9 及必修四 P47.1 题整合。
?A ? b ? 3 ?A ? 2 ?? ?? A ? b ? ?1 ?b ? 1

21、解: (Ⅰ)由 f ( x ) 的图象可知 ? 分)

∴f(x)=2sin( ?x ? ? )+1

( 1

? ?? ?3 ?? ? ? 2 ? 由“五点法”可知 ? ?? 2 ? ? ? ? ? ? ? ? 3 2 ?

(3 分)解得: ? ? 1, ? ?

? 6

(4 分)

? 则 f (x) ? 2 sin(x ? ) ? 1 6

(5 分)

? ? ? 2? ? (Ⅱ)由 ? ? 2k? ? x ? ? ? 2k? ,K∈Z,得 ? ? 2k? ? x ? ? 2k?, k ? z 。 2 6 2 3 3

所以 f ( x ) 的单调递增区间为 [?

2? ? ? 2k?, ? 2k?], k ? z 3 3

(8 分) (10 分)

? ? 7? ? 1 (Ⅲ)因为 x ? [0, ?] ,则 x ? ?[ , ] ,则 sin(x ? ) ?[? ,1] 故 f (x) ? [0,3] 6 6 6 6 2 而不等式 | f (x) ? m |? 2 ? m ? 2 ? f (x) ? m ? 2 恒成立。

则需满足: ?

?m ? 2 ? 0 ,即 1 ? m ? 2 ?m ? 2 ? 3

所以实数 m 的取值范围为[1,2]

(12 分)

22、解: (Ⅰ)①由

1? x ? 0 ? (x ? 1)(x ? 1) ? 0 ? ?1 ? x ? 1 1? x

? f (x) 的定义域为(-1,1) ,关于原点对称。又对于定义域内的任意 x,
f (?x) ? lg 1 ? (?x ) 1? x 1 ? x ?1 1? x ? lg ? lg( ) ? ? lg ? ?f (x) 1 ? (?x ) 1? x 1? x 1? x

(2 分) (3 分)

? f (x) 为奇函数
a?b 1? 1? a 1? b a?b 1 ? ab ? lg ? lg ② f (a) ? f (b) ? f ( ) ? lg a?b 1? a 1? b 1 ? ab 1? 1 ? ab

? lg

1 ? a ? b ? ab 1 ? a ? b ? ab (1 ? a )(1 ? b) 1 ? a ? b ? ab ? lg ? lg ?0 ? lg (1 ? a )(1 ? b) 1 ? a ? b ? ab 1 ? a ? b ? ab 1 ? a ? b ? ab

(5 分)

用心

爱心

专心

-8-

(Ⅱ)由题意,得方程 f (x) ? x ? m ? 0 在 [0, 因 f (x) ? lg

9 ] 上恒有实数解, 11

9 1? x 2 ] 上为减函数,y=-x 也为减函数。 ? lg(?1 ? ) 在 [0, 11 1? x 1? x 9 20 20 ] 上 为 减 函 数 ? ? ? f (x) ? x ? 0 , 故 m ?[? , 0] 满 足 条 件 。 11 11 11

? m ? f (x) ? x 在 [0,

(9 分)
1? x 2 ? lg(?1 ? ) 在(-1,1)上单调递减。 1? x 1? x

(Ⅲ)方法一: f (x) ? lg

a?b 由(Ⅰ)知 f ( x ) 在(-1,1)内为奇函数且 a, b ? (?1, 1) 时, f (a) ? f (b) ? f ( ) 1 ? ab
1 (n ? 1)(n ? 2) 1 ] 则: f ( 2 ) ? f[ ] ? f[ 1 (n ? 1)(n ? 2) ? 1 n ? 3n ? 1 1? (n ? 1)(n ? 2)

1

1 1 ? (? ) n ?1 n ? 2 ] ? f ( 1 ) ? f (? 1 ) ? f ( 1 ) ? f ( 1 ) ? f[ 1 1 n ?1 n?2 n ?1 n?2 1? ? (? ) n ?1 n?2

(12 分)

1 1 1 ? f ( ) ? f ( ) ? ? ? f( 2 ) 5 11 n ? 3n ? 1

1 1 1 1 1 1 1 1 ) ? [f ( ) ? f ( )] ? [f ( ) ? f ( )] ? ? ? [f( ) ? f( )] ? f ( ) ? f ( 2 n?2 2 3 3 4 n ?1 n?2

∵n 为正整数

?0 ?

1 1 1 1 1 ? 1 ,有 f ( ) ? f (0) ? 0 ?f ( ) ? f ( ) ? f( ) n?2 n?2 2 n?2 2

1 1 1 1 故 f ( ) ? f ( ) ? ? ? f( 2 ) ? f( ) 5 11 2 n ? 3n ? 1

(14 分)

1 1- 2 1 n2 + 3n n(n + 3) 方法二: f ( 2 ) = lg[ n + 3n +1 ] = lg 2 = lg 1 n + 3n +1 n + 3n + 2 (n +1)(n + 2) 1+ 2 n + 3n +1


(11 分)

1 1 1 1创 4 2 5 3? 6 f ( ) + f ( ) +技 + f ( 2 ) = lg + lg +lg +技 5 11 n +3n +1 2创 3 3 4 4?5 1创 2 5 3 ? 6 4 n( n 3) = lg[ 创 醇 ] 2创 3 4 4 ? 5 3 ( n 1)( n + 2) 1 n +3 = lg( ( 分) ) 11 3 n +1

+lg

n( n 3) ( n 1)( n +2)

用心

爱心

专心

-9-

1 n +3 = lg + lg 3 n +1 1 > lg + lg1 3 1 = f ( ( 分) ) 13 2
故不等式得证 命题潜规则:由必修一 P82.8 题原创。

用心

爱心

专心

- 10 -


赞助商链接
更多相关文档:

数学---四川省巴中市2016-2017学年高一(下)期末试卷(理...

四川省巴中市 2016-2017 学年高一 (下) 期末数学试卷 (理) 一、选择题(共 12 小题,每小题 5 分,满分 60 分) 1. (5 分)若θ 是第四象限角,则下列...

2016-2017学年四川省巴中市高一(下)期末数学试卷(文科)...

2016-2017 学年四川省巴中市高一(下)期末数学试卷(文科) 一、选择题:本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个 选项中,只有一个是...

2015-2016学年四川省巴中市高一(上)期末数学试卷

2015-2016 学年四川省巴中市高一(上)期末数学试卷一、选择题:本大题共 12 ...( ) A.1:2 B.1:3 C.1:4 D.1:5 11.已知函数 f(x)=3sin(2x﹣ ...

四川省巴中市南江县2015-2016学年八年级(上)期末数学试...

四川省巴中市南江县2015-2016学年八年级(上)期末数学试卷(解析版)_初二数学_...则∠A 的度数是 12° . 【考点】等腰三角形的性质. 第 11 页(共 19 页...

2014-2015学年四川省巴中市平昌县得胜中学高一(上)数学...

2014-2015学年四川省巴中市平昌县得胜中学高一(上)数学期末试卷 及解析(文科)_...11. (5.00 分)计算 lg +( ) = .. 12. (5.00 分)已知函数 y=f(x...

2016-2017学年四川省巴中市高一下学期期末年段学情检测...

2016-2017学年四川省巴中市高一下学期期末年段学情检测数学(理)试题_高一数学_...12 个小题,每小题 5 分,共 60 分.在每小题给出的四个 选项中,只有一项...

2015-2016学年四川省巴中市南江县七年级(上)期末数学试卷

2015-2016 学年四川省巴中市南江县七年级(上)期末数学试卷一、精心选一选, (...11. (3 分)绝对值小于 3.7 的负整数为 . 第 1 页(共 15 页) 12. ...

四川省巴中市平昌县得胜中学2014-2015学年高一上学期期...

四川省巴中市平昌县得胜中学2014-2015学年高一上学期期末数学试卷(文科)_数学_...11. (5 分)计算 lg +( ) =. 12. (5 分)已知函数 y=f(x)可用列表...

四川省巴中市平昌中学2014-2015学年高一数学下学期期末...

四川省巴中市平昌中学2014-2015学年高一数学下学期期末考试试题 文_数学_高中...3 . ? 2 5 19. (本小题满分 12 分) 平昌县汽车客运公司规定旅客可随身...

四川省巴中市平昌中学2014-2015学年高一(下)期末数学试...

四川省巴中市平昌中学2014-2015学年高一(下)期末数学试卷(理科) Word版含解析_...(本大题共 12 小题,每小题 5 分,共 60 分.在每小题的四个选项中只有...

更多相关标签:
网站地图

文档资料共享网 nexoncn.com copyright ©right 2010-2020。
文档资料共享网内容来自网络,如有侵犯请联系客服。email:zhit325@126.com