当前位置:首页 >> 数学 >> 2013年高中数学解题思维一点通:利用[反客为主]巧解题

2013年高中数学解题思维一点通:利用[反客为主]巧解题

利用[反客为主]巧解题
数学中的“反客为主”也称更换主元,是指在解题过程中将两个字母的主次互换,使问 题达到消元、降次、化归的目的,将复杂问题简单化。用这种方法时必须抓住问题的实质, 要求同学们挣脱知识框架的束缚,激活多元思维,搭建解题新平台。现以下面几道题为例进 行说明。 例 1 若不等式 2 x ? 1 ? m( x 2 ? 1) 对满足 | m |? 2 的所有 m 都成立,求 x 的取值范围。 解:对该不等式,一般是将 x 看成变量,这样就会使问题变得烦琐,但如果将 m 看成变 量,原不等式可整理为关于 m 的一次不等式 ( x 2 ? 1)m ? (2 x ? 1) ? 0 ,问题转化为一次函数

f (m) ? ( x 2 ? 1)m ? (2 x ? 1) 在 区 间 ? 2 ? m ? 2 上 恒 小 于 零 。 故 问 题 等 价 于 解 不 等 式 组
?f (?2) ? 0 7 ?1 3 ?1 ,解之可得 。 ?x? ? 2 2 ?f (2) ? 0
评注:当方程或不等式中出现参数时,同学们往往以自变量为主元,有时易致使解题思 路受阻,解题过程不畅。若将题中已知范围的参数与自变量“主、客转化” ,问题就会变得 简单。

? ?? 例 2 设 ? ? ?0, ? ,且 cos 2 ? ? 2m sin ? ? 2m ? 1 ? 0 恒成立,求 m 的取值范围。 ? 2?
解:将以 ? 为主元转换成以 m 为主元,由条件知 2m(sin ? ? 1) ? sin 2 ? 。 (1)当 sin ? ? 1 时, m ? R 。 (2)当 sin ? ? 1 时, 2m ?

sin 2 ? sin 2 ? 恒成立,只须 2m 大于 的最大值。 sin ? ? 1 sin ? ? 1



1 sin 2 ? 1 ? ?? ?2?0 ? sin ? ? 1 ? ? 2 ,由 ? ? ?0, ? 知 sin ? ? 1 ? sin ? ? 1 sin ? ? 1 sin ? ? 1 ? 2?

当且仅当 sin ? ? 1 ? ?1 ,即θ =0 时等号成立。所以,m>0。

例3

已知二次函数 f ( x ) ? ax 2 ? x (a ? R,a ? 0) ,若 x ? [0, 时,总有 | f ( x ) |? 1 ,试求 a 1]

的取值范围。 解:当 x=0 时, | f (0) |? 0 ? 1 恒成立。

第 1 页 共 2 页

当 x≠0 时, | ax 2 ? x |? 1 ,

? 1? ? 1 ?a ? ?? 2 ? x ? ?ax 2 ? x ? ?1 ? ? ?x ? 即 ? 1 ? ax 2 ? x ? 1 ,即 ? ,即 ? 2 ?ax ? x ? 1 ?a ? 1 ? 1 ? ? x2 x ?


1 ? t , 因 为 x ? ?0, , 所 以 t ? [1, ?) , 上 述 问 题 转 化 为 t ? [1, ?) 时 恒 有 ? ? 1? x

2 2 ? ? ?a ? ?( t ? t ) ?a ? (? t ? t ) max ,即当 t ? [1, ?) 时, ? 。 ? ? ?a ? t 2 ? t ?a ? ( t 2 ? t ) min ? ?

?a ? ?2 解之得 ? ,因 a≠0,故 ? 2 ? a ? 0 。 ?a ? 0
评注:上述几例都是利用了“反客为主”的思想,用未知变量将参数表示出来。还利用 了 a ? f ( x ) 恒成立 ? a ? f ( x ) max ;a ? f ( x ) 恒成立 ? a ? f ( x ) min 等结论, 求得参数的取值范 围。

第 2 页 共 2 页


友情链接:学习资料共享网 | 兰溪范文 | 伤城文章网 | 酷我资料网 | 省心范文网 | 海文库 | 学习资料共享网 | 兰溪范文 | 伤城文章网 | 酷我资料网 | 省心范文网 | 海文库 | 学习资料共享网 | 兰溪范文 | 伤城文章网 | 酷我资料网 | 省心范文网 | 海文库 | 学习资料共享网 | 兰溪范文 | 伤城文章网 | 酷我资料网 | 省心范文网 | 海文库 | 学习资料共享网 | 兰溪范文 | 伤城文章网 | 酷我资料网 | 省心范文网 | 海文库 | 学习资料共享网 | 兰溪范文 | 伤城文章网 | 酷我资料网 | 省心范文网 | 海文库 |
网站地图

文档资料共享网 nexoncn.com copyright ©right 2010-2020。
文档资料共享网内容来自网络,如有侵犯请联系客服。email:3088529994@qq.com